We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Mi...We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The eruption involved in the disappearance of an Ha filament can be clearly identified in EIT 195A difference images. Two flare-like EUV ribbons and two obvious coronal dimming regions were formed. The two dimming regions had a similar appearance in lines formed in temperature range 6×10^4 K to several 10^6 K. They were located in regions of opposite magnetic polarities near the two ends of the eruptive filament. No significant X-ray or Hα flare was recorded associated with the eruption and no obvious photospheric magnetic activity was detected around the eruptive region, and particularly below the coronal dimming regions. The above surface activities were closely associated with a partial halo-type coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on the SOHO. In terms of the magnetic flux rope model of CMEs, we explained these multiple observations as an integral process of largescale rearrangement of coronal magnetic field initiated by the filament eruption, in which the dimming regions marked the evacuated feet of the flux rope.展开更多
We report on the rare eruption of a miniature Hα filament that took the form of a surge. The filament first underwent a full development within 46 min and then began to erupt 9 min later, followed by a compact, impul...We report on the rare eruption of a miniature Hα filament that took the form of a surge. The filament first underwent a full development within 46 min and then began to erupt 9 min later, followed by a compact, impulsive X-ray class M2.2 flare with a two-ribbon nature only at the early eruption phase. During the eruption, its top rose, whereas the two legs remained rooted in the chromosphere and showed little swelling perpendicular to the rising direction. This led to a surge-like eruption with a narrow angular extent. Similar to the recent observations for standard and blowout X- ray jets by Moore et al., we thus define it as a "blowout Hα surge." Furthermore, our observations showed that the eruption was associated with (1) a coronal mass ejection guided by a pre-existing streamer, (2) abrupt, significant, and persistent changes in the photospheric magnetic field around the filament, and (3) a sudden disappearance of a small pore. These observations thus provide evidence that a blowout surge is a small- scale version of a large-scale filament eruption in many aspects. Our observations further suggest that at least part of the Hα surges belong to blowout-type cases, and the exact distinction between the standard and blowout Hα surges is important in understanding their different origins and associated eruptive phenomena.展开更多
We present observations of the eruption of a large-scale quiescent filament (LF) that is associated with the formation and eruption of a miniature filament (MF). As a result of convergence and subsequent cancelati...We present observations of the eruption of a large-scale quiescent filament (LF) that is associated with the formation and eruption of a miniature filament (MF). As a result of convergence and subsequent cancelation of opposite-polarity magnetic flux, MF was formed just below the spine of the LF's right seg- ment. Probably triggered by a nearby newly emerging flux, MF underwent a failed eruption immediately after its full development, which first ejected away from the spine of LF and then drained back to the Sun. This eruption no sooner started than the overlying LF's right segment began to rise slowly and the LF's other parts were also disturbed, and eventually the whole LF erupted bodily and quickly. These observa- tions suggest that the MF can serve as an intermediary that links the photospheric small-scale magnetic-field activities to the eruption of the overlying large filament. It appears that, rather than directly interacting with the supporting magnetic field of LF, small-scale flux cancelation and emergence in the LF's channel can manifest themselves as the formation and eruption of MF and so indirectly affect the stability of LE展开更多
基金Supported by the National Natural Science Foundation of China.
文摘We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The eruption involved in the disappearance of an Ha filament can be clearly identified in EIT 195A difference images. Two flare-like EUV ribbons and two obvious coronal dimming regions were formed. The two dimming regions had a similar appearance in lines formed in temperature range 6×10^4 K to several 10^6 K. They were located in regions of opposite magnetic polarities near the two ends of the eruptive filament. No significant X-ray or Hα flare was recorded associated with the eruption and no obvious photospheric magnetic activity was detected around the eruptive region, and particularly below the coronal dimming regions. The above surface activities were closely associated with a partial halo-type coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on the SOHO. In terms of the magnetic flux rope model of CMEs, we explained these multiple observations as an integral process of largescale rearrangement of coronal magnetic field initiated by the filament eruption, in which the dimming regions marked the evacuated feet of the flux rope.
基金supported by the National Basic Research Program of China (973 program, 2011CB811400)by the National Natural Science Foundation of China (Grant Nos. 10973038 and 11173058)
文摘We report on the rare eruption of a miniature Hα filament that took the form of a surge. The filament first underwent a full development within 46 min and then began to erupt 9 min later, followed by a compact, impulsive X-ray class M2.2 flare with a two-ribbon nature only at the early eruption phase. During the eruption, its top rose, whereas the two legs remained rooted in the chromosphere and showed little swelling perpendicular to the rising direction. This led to a surge-like eruption with a narrow angular extent. Similar to the recent observations for standard and blowout X- ray jets by Moore et al., we thus define it as a "blowout Hα surge." Furthermore, our observations showed that the eruption was associated with (1) a coronal mass ejection guided by a pre-existing streamer, (2) abrupt, significant, and persistent changes in the photospheric magnetic field around the filament, and (3) a sudden disappearance of a small pore. These observations thus provide evidence that a blowout surge is a small- scale version of a large-scale filament eruption in many aspects. Our observations further suggest that at least part of the Hα surges belong to blowout-type cases, and the exact distinction between the standard and blowout Hα surges is important in understanding their different origins and associated eruptive phenomena.
基金supported by the National Natural Science Foundation of China (NSFC,Grant Nos.11273056,11473065 and 11333007)
文摘We present observations of the eruption of a large-scale quiescent filament (LF) that is associated with the formation and eruption of a miniature filament (MF). As a result of convergence and subsequent cancelation of opposite-polarity magnetic flux, MF was formed just below the spine of the LF's right seg- ment. Probably triggered by a nearby newly emerging flux, MF underwent a failed eruption immediately after its full development, which first ejected away from the spine of LF and then drained back to the Sun. This eruption no sooner started than the overlying LF's right segment began to rise slowly and the LF's other parts were also disturbed, and eventually the whole LF erupted bodily and quickly. These observa- tions suggest that the MF can serve as an intermediary that links the photospheric small-scale magnetic-field activities to the eruption of the overlying large filament. It appears that, rather than directly interacting with the supporting magnetic field of LF, small-scale flux cancelation and emergence in the LF's channel can manifest themselves as the formation and eruption of MF and so indirectly affect the stability of LE