The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill...The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.展开更多
The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency...The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency braking conditions. This paper analyzes the flow distribution based on a mathematical model and analyzes the key factors that could affect the filling ratio and the braking torque of the WM retarder. Computational fluid dynamics(CFD) simulations are conducted to compute the braking torque, and theresults are verified by experiments. It is shown that the filling ratio and the braking torque can be expressed by the mathematical model proposed in this paper. Compared with the Reynolds averaged Navier-Stokes(RANS) turbulent model, the shear stress transport(SST) turbulent model can more accurately simulate the braking torque. Finally, the flow distribution and the flow character in the WM retarders are analyzed.展开更多
Real time control (RTC) of urban drainage systems (UDSs) is an important measure to reduce combined sewer overflow (CSO) and urban flooding, helping achieve the aims of "Sponge City'. Application of RTC requir...Real time control (RTC) of urban drainage systems (UDSs) is an important measure to reduce combined sewer overflow (CSO) and urban flooding, helping achieve the aims of "Sponge City'. Application of RTC requires three main steps: strategy design, simulation-based evaluation and field test. But many of published RTC studies are system-specific, lacking discussions on how to design a strategy step by step. In addition, the existing studies are prone to use hydrologic model to evaluated strategics, but a more precise and dynamic insight into strategy performance is needed. To fill these knowledge gaps, based on a case UDS in Kunming city, a studio on RTC strategy design and Management Model (SWMM) - uncier four typical rainfall events characterized by different return periods (1-year or 0.5 year) and different spatial distributions (uniform or uneven). The equal filling strategy outperformss other two strategies and it can achieve 10% more CSO reduction and 5% more flooding reduction relative to the no-tank case.展开更多
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.51404013)the Natural Science Foundation of Anhui Province (Nos.1508085ME77 and 1508085QE89)the Open Projects of State Key Laboratory for Geomechanics & Deep Underground Engineering at the China University of Mining and Technology (No.SKLGDUEK1212)
文摘The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.
基金supported by the Program for New Century Excellent Talents in University(Grant No.NCET-08-0248)the 985 Project Automotive Engineering of Jilin University
文摘The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency braking conditions. This paper analyzes the flow distribution based on a mathematical model and analyzes the key factors that could affect the filling ratio and the braking torque of the WM retarder. Computational fluid dynamics(CFD) simulations are conducted to compute the braking torque, and theresults are verified by experiments. It is shown that the filling ratio and the braking torque can be expressed by the mathematical model proposed in this paper. Compared with the Reynolds averaged Navier-Stokes(RANS) turbulent model, the shear stress transport(SST) turbulent model can more accurately simulate the braking torque. Finally, the flow distribution and the flow character in the WM retarders are analyzed.
文摘Real time control (RTC) of urban drainage systems (UDSs) is an important measure to reduce combined sewer overflow (CSO) and urban flooding, helping achieve the aims of "Sponge City'. Application of RTC requires three main steps: strategy design, simulation-based evaluation and field test. But many of published RTC studies are system-specific, lacking discussions on how to design a strategy step by step. In addition, the existing studies are prone to use hydrologic model to evaluated strategics, but a more precise and dynamic insight into strategy performance is needed. To fill these knowledge gaps, based on a case UDS in Kunming city, a studio on RTC strategy design and Management Model (SWMM) - uncier four typical rainfall events characterized by different return periods (1-year or 0.5 year) and different spatial distributions (uniform or uneven). The equal filling strategy outperformss other two strategies and it can achieve 10% more CSO reduction and 5% more flooding reduction relative to the no-tank case.