The thermal conductivities of different typical species filling materials for sliding gate systems for steel ladles were measured using a hot wire technique, and the relationships between thermal conductivity and te...The thermal conductivities of different typical species filling materials for sliding gate systems for steel ladles were measured using a hot wire technique, and the relationships between thermal conductivity and temperature were regressed. The factors affecting thermal conductivity were analyzed by using variance analysis for a perpendicular experiment. The effects of thermal conductivity on sliding gate free tapping were studied, and it was revealed that decreasing the thermal conductivity of the filling materials is beneficial in enhancing the rate of free tapping for sliding gates.展开更多
To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious materia...To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area.展开更多
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl...In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.展开更多
Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organ...Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organophilic montmorillonite (OMMT) in OCFM is widened and an exfoliated structure may be formed. Thermal-oxidative aging behavior of OCFM and SBS modified bitumen crack filling material (SCFM) was investigated. The experimental results indicate that the rate of thermal-oxidative aging of OCFM is much slower than that of SCFM, which can be attributed to barrier of exfoliated structure of OCFM to oxygen.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-tr...An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.展开更多
The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The...The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.展开更多
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ...In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.展开更多
A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as ...A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.展开更多
This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling ...This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling material. Then, a type of permeable graded gravel is proposed, suitable for high-speed railway subgrade. A series of in-door water retention, permeability, and frost heave tests were performed under different graded conditions. Water retention, permeability, and frost heave characteristic of dif- ferent graded filling materials can be determined, in order to define the gradation range of permeable graded gravel. Relying on the frost-heave monitoring record of high speed railway in Northeast China, a series of experimental studies were per- formed, which included on-site filler production, compaction test, and the anti-frost effect test, in order to improve the pro- duction and compaction techniques of permeable graded gravel. From the research of this paper, the use of permeable graded gravel subgrade as the anti-frost structure for the high-speed railway subgrade in cold areas is feasible.展开更多
To quantitatively determine the effect of different factors such as fracture width,dip angle,extension and filling material on Stoneley wave amplitude decreasing,the shock tube experiment method was changed from fixin...To quantitatively determine the effect of different factors such as fracture width,dip angle,extension and filling material on Stoneley wave amplitude decreasing,the shock tube experiment method was changed from fixing the sample and vertically moving the sensor in the borehole to fixing the sensors along the shock tube wall and vertically moving the sample without drilling the borehole in it.The measurement accuracy and the signal-to-noise ratio of the first Stoneley wave were improved by the time corrections and amplitude corrections of Stoneley wave signals.At the same time,21 sets of core models with different fracture parameters were processed for this measurement method by using full-diameter carbonate core,and relative amplitudes were defined to characterize Stoneley wave amplitude decreasing.The experimental results show that the relative amplitude of Stoneley wave exponentially decreases with increasing fracture width.The relative amplitude of Stoneley wave linearly decreases with increasing fracture dip angle.The relative amplitude of Stoneley wave exponentially decreases with increasing fracture extension.The relative amplitude of Stoneley wave decreases with increasing the permeability of filling material in the fracture.Under the above four conditions,the fracture width has the greatest effect on the decreasing of Stoneley wave amplitude,followed by the fracture extension and the permeability of filling material,and finally the fracture dip angle.展开更多
AIM: To evaluate the clinical effect and complications of two different filling materials (aerocyst urethral catheter and expansion sponges) applying in external dacryocystorhinostomy (EXT-DCR) and compare their advan...AIM: To evaluate the clinical effect and complications of two different filling materials (aerocyst urethral catheter and expansion sponges) applying in external dacryocystorhinostomy (EXT-DCR) and compare their advantages and disadvantages. METHODS: A retrospective study was made in the period from April, 1 2000 to April, 1 2005. Totally 180 patients (240 eyes) underwent the EX-DCR using different filling materials and divided into three groups randomly: negative control groups (group 1), expansion sponges group (group 2) and aerocyst urethral catheter group (group 3). The gender, etiology, clinical findings, surgical technique, filling materials, the condition of ocular surface and complications were analyzed. Filling materials were removed during day 7. Postoperative success was determined by lacrimal patency to irrigation, a positive dye test, hemorrhage and errhysis conditions after extubation and subjective resolution of epiphora and liquor puris. RESULTS: During a mean follow-up of 5.14? .69 years, the success rate were 73.7% (group 1), 86.5% (group 2), 98.7% (group 3) in three groups. There was significant statistical difference among three groups in the surgical success rate and the operative complications (including hemorrhage, errhysis, periorbital ecchymosis after extubation)(P<0.05). CONCLUSION: EXT-DCR with aerocyst urethral cathete intraoperatively have higher success rate, fewer operative complications and a high patient satisfaction,and can be used to simplify and speed up traditional EXT-DCR.展开更多
文摘The thermal conductivities of different typical species filling materials for sliding gate systems for steel ladles were measured using a hot wire technique, and the relationships between thermal conductivity and temperature were regressed. The factors affecting thermal conductivity were analyzed by using variance analysis for a perpendicular experiment. The effects of thermal conductivity on sliding gate free tapping were studied, and it was revealed that decreasing the thermal conductivity of the filling materials is beneficial in enhancing the rate of free tapping for sliding gates.
基金Funded by the National Natural Science Foundation of China(No.51574055)the Natural Science Foundation of Liaoning Province(No.20170540143)
文摘To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area.
基金supported by the National Natural Science Foundation of China (No. 50490270, 50774077, 50574089, 50490273)the New Century Excellent Personnel Training Program of the Ministry of Education of China (No. NCET-06-0475)+1 种基金the Special Funds of Universities outstanding doctoral dissertation (No. 200760) the Basic Research Program of China (No. 2006CB202204-3)
文摘In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.
基金Funded by the National Natural Science Foundation of China (50773061)
文摘Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organophilic montmorillonite (OMMT) in OCFM is widened and an exfoliated structure may be formed. Thermal-oxidative aging behavior of OCFM and SBS modified bitumen crack filling material (SCFM) was investigated. The experimental results indicate that the rate of thermal-oxidative aging of OCFM is much slower than that of SCFM, which can be attributed to barrier of exfoliated structure of OCFM to oxygen.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
文摘An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.
基金provided by the National Natural Science Foundation of China (Nos. 51074165 and 50834004)
文摘The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.
文摘In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.
文摘A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.
基金supported by the China Railways Corporation research projects entitled"The technical tests for the high speed railway subgrade frost heave prevention in the alpine"(Project No.Z2013-038)The long term observation of frost-heave technology for Ha-Da high-speed railway during the operation(Project No.Z2012-062)+2 种基金Optimal design for high-speed railway subgrade structure under different grade and environment(Project No.2014G003-A)from the Railway Scientific and Technological Research and Development Center called"The mechanism and evolution rule of the graded gravel under freeze and thawing cycles for the high speed railway"(Project No.J2014G003)The disease control technology and equipment of gradating gravel in surface layer of subgrade bed(Project No.2013YJ032)
文摘This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling material. Then, a type of permeable graded gravel is proposed, suitable for high-speed railway subgrade. A series of in-door water retention, permeability, and frost heave tests were performed under different graded conditions. Water retention, permeability, and frost heave characteristic of dif- ferent graded filling materials can be determined, in order to define the gradation range of permeable graded gravel. Relying on the frost-heave monitoring record of high speed railway in Northeast China, a series of experimental studies were per- formed, which included on-site filler production, compaction test, and the anti-frost effect test, in order to improve the pro- duction and compaction techniques of permeable graded gravel. From the research of this paper, the use of permeable graded gravel subgrade as the anti-frost structure for the high-speed railway subgrade in cold areas is feasible.
基金Supported by the PetroChina’s Fundamental Research Project(2019A-3609)。
文摘To quantitatively determine the effect of different factors such as fracture width,dip angle,extension and filling material on Stoneley wave amplitude decreasing,the shock tube experiment method was changed from fixing the sample and vertically moving the sensor in the borehole to fixing the sensors along the shock tube wall and vertically moving the sample without drilling the borehole in it.The measurement accuracy and the signal-to-noise ratio of the first Stoneley wave were improved by the time corrections and amplitude corrections of Stoneley wave signals.At the same time,21 sets of core models with different fracture parameters were processed for this measurement method by using full-diameter carbonate core,and relative amplitudes were defined to characterize Stoneley wave amplitude decreasing.The experimental results show that the relative amplitude of Stoneley wave exponentially decreases with increasing fracture width.The relative amplitude of Stoneley wave linearly decreases with increasing fracture dip angle.The relative amplitude of Stoneley wave exponentially decreases with increasing fracture extension.The relative amplitude of Stoneley wave decreases with increasing the permeability of filling material in the fracture.Under the above four conditions,the fracture width has the greatest effect on the decreasing of Stoneley wave amplitude,followed by the fracture extension and the permeability of filling material,and finally the fracture dip angle.
基金Supported by National Natural Science Foundation of China(No.81160118,81160105,81170823, 81100648,81100649)Technology Foundation of Jiangxi Province,China(No.20111BBG70026-2)+2 种基金Health Department Foundation of Jiangxi Province,China(No.20091069)Distinguished Young Talents in Higher Education Foundation of Guangdong,China(No.LYM10112)The National High Technology Research of China(863 project)(No.2006AA02A131)
文摘AIM: To evaluate the clinical effect and complications of two different filling materials (aerocyst urethral catheter and expansion sponges) applying in external dacryocystorhinostomy (EXT-DCR) and compare their advantages and disadvantages. METHODS: A retrospective study was made in the period from April, 1 2000 to April, 1 2005. Totally 180 patients (240 eyes) underwent the EX-DCR using different filling materials and divided into three groups randomly: negative control groups (group 1), expansion sponges group (group 2) and aerocyst urethral catheter group (group 3). The gender, etiology, clinical findings, surgical technique, filling materials, the condition of ocular surface and complications were analyzed. Filling materials were removed during day 7. Postoperative success was determined by lacrimal patency to irrigation, a positive dye test, hemorrhage and errhysis conditions after extubation and subjective resolution of epiphora and liquor puris. RESULTS: During a mean follow-up of 5.14? .69 years, the success rate were 73.7% (group 1), 86.5% (group 2), 98.7% (group 3) in three groups. There was significant statistical difference among three groups in the surgical success rate and the operative complications (including hemorrhage, errhysis, periorbital ecchymosis after extubation)(P<0.05). CONCLUSION: EXT-DCR with aerocyst urethral cathete intraoperatively have higher success rate, fewer operative complications and a high patient satisfaction,and can be used to simplify and speed up traditional EXT-DCR.