In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations gove...A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations governing Rayleigh wave scattering, used to predict the complicated Rayleigh wave field generated by a number of irregular scatters embedded in an elastic half-space. Then, the passive isolation effectiveness of a row of piles for screening Rayleigh wave was studied in detail. The effects of relevant parameters on the screening effectiveness were investigated and analyzed from the perspective of equivalence with in-filled trench. The results show that using a row of rigid piles as wave barrier is more effective than that of flexible ones, and an optimum reduction of vibration can be achieved either by increasing the size of piles or by decreasing the net spacing between the piles. Finally, based on the derived integral equation for Rayleigh wave scattering, the principle of equivalent modeling of the barrier of piles by an in-filled trench is put forward, which simplifies the analysis of vibration isolation by a row of piles.展开更多
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(20130072110016)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations governing Rayleigh wave scattering, used to predict the complicated Rayleigh wave field generated by a number of irregular scatters embedded in an elastic half-space. Then, the passive isolation effectiveness of a row of piles for screening Rayleigh wave was studied in detail. The effects of relevant parameters on the screening effectiveness were investigated and analyzed from the perspective of equivalence with in-filled trench. The results show that using a row of rigid piles as wave barrier is more effective than that of flexible ones, and an optimum reduction of vibration can be achieved either by increasing the size of piles or by decreasing the net spacing between the piles. Finally, based on the derived integral equation for Rayleigh wave scattering, the principle of equivalent modeling of the barrier of piles by an in-filled trench is put forward, which simplifies the analysis of vibration isolation by a row of piles.