Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated....Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.展开更多
In order to recover the strip pillar coal resources, reduce the amount of gangue mountain and realize remediation of the goaf environment in the old mining area, the raw gangue filling mining technology was proposed. ...In order to recover the strip pillar coal resources, reduce the amount of gangue mountain and realize remediation of the goaf environment in the old mining area, the raw gangue filling mining technology was proposed. According to the previous practical experience, the feasibility of the implementation of raw gangue filling mining technology in the coal-pressed area was analyzed. Through the filling gangue compaction test, the deformation under different loading stages was obtained. Further, a reasonable prediction of the deformation beyond the experimental limited loading load was made based on the experimental results. Through the deformation source analysis of the whole process of gangue filling, the key factors for controlling deformation before, during, and after filling were determined. Additionally, the proportion of deformation during different stages was quantified. Considering the protection of surface buildings, mining fullness of the working face and mining technology, the production parameters of 1209 and 1210 filling working faces were preliminarily determined. Through numerical simulation, the rationality of mining scheme was verified. Based on the practice of 1209 working face and the key factors to control the deformation of gangue filling, the mining system and process in 1210 working face were optimized. According to the measured surface rock movement, raw gangue filling mining technology can meet the requirements of surface building protection level. Especially, this paper provides a method to quantitatively calculate the equivalent mining height (EMH) of raw gangue filling and its mining deformation, which has reference significance for old mining areas.展开更多
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Sto...A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.展开更多
In lost foam casting (LFC), the distribution of polymer beads during the bead filling process is not uniform, and the collision between polymer beads determines the distribution of two-phase flow of gas and solid. The...In lost foam casting (LFC), the distribution of polymer beads during the bead filling process is not uniform, and the collision between polymer beads determines the distribution of two-phase flow of gas and solid. The interaction between the gas and solid phases reveals as coupling effect of the force that gas exerts on particles or vice versa, or that among particles. The gas-solid flow in filling process is nonlinearity, which makes the coupling effect an essential point to carry out a simulation properly. Therefore, information of each particle's motion is important for acquiring the law of filling process. In bead filling process, compressed air is pressed into mold cavity, and discharged from gas vent, creating a pressure difference between outer and inner space near the gas vent. This pressure difference directly changes the spatial distribution and motion trace of gas and solid phases. In this paper, Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) are employed to simulate the fluid dynamic character based on Newton's Third Law of Motion. The simulation results of some casting products such as pressure plate and valve handle are compared with the result obtained from practical experiment in order to test the feasibility of DEM. The comparison shows that this DEM method can be a very promising tool in the mould filling simulation of beads' movement.展开更多
Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the de...Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting' s mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects an...In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.展开更多
The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality o...The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality of aluminum castings produced in permanent molds.An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed.Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems.The investigation discovers that there are many influencing factors on the mold filling process.This paper focuses its research on some of the factors,such as the dimensions of the vertical riser and slot thickness,as well as roughness of the coating layer.The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system.A bigger vertical riser,proper slot thickness and rougher coating can provide not only a better mold filling pattern,but also hot melt into the top of the cavity.A proper temperature gradient is obtainable,higher at the bottom and lower at the top of the casting cavity,which is in favor of feeding during casting solidification.展开更多
The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have ...The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory, and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.展开更多
The distribution of a magnetic field over an inductor used for sheet castings has been investigated experimentally.With an increase in height from the surface, the magnetic field density decreases according to the exp...The distribution of a magnetic field over an inductor used for sheet castings has been investigated experimentally.With an increase in height from the surface, the magnetic field density decreases according to the exponential law.In the transverse direction, the magnetic field density is approximately uniform except near the edges.The magnetic field density is direct proportional to the number of turns multiplied by the current in amperes.Ferro-magnetic material in the upper mould can enhance the magnetic field density.Under the electromagnetic force, the mould-filling process of sheet casings has been studied by physical simulation method.The difference in filling capability between gravity casting and travelling magnetic field casting has been studied.The electromagnetic force can enhance the filling process, but it also brings a problem.With an increase in the magnetic field density, the surface quality of the aluminum alloy sheet castings becomes poor.The reason is discussed.展开更多
Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which...Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags.展开更多
基金This work was funded by the National Natural Science Foundation of China(Nos.52075198,52271102 and 52205359)the China Postdoctoral Science Foundation(No.2021M691112).
文摘Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.
文摘In order to recover the strip pillar coal resources, reduce the amount of gangue mountain and realize remediation of the goaf environment in the old mining area, the raw gangue filling mining technology was proposed. According to the previous practical experience, the feasibility of the implementation of raw gangue filling mining technology in the coal-pressed area was analyzed. Through the filling gangue compaction test, the deformation under different loading stages was obtained. Further, a reasonable prediction of the deformation beyond the experimental limited loading load was made based on the experimental results. Through the deformation source analysis of the whole process of gangue filling, the key factors for controlling deformation before, during, and after filling were determined. Additionally, the proportion of deformation during different stages was quantified. Considering the protection of surface buildings, mining fullness of the working face and mining technology, the production parameters of 1209 and 1210 filling working faces were preliminarily determined. Through numerical simulation, the rationality of mining scheme was verified. Based on the practice of 1209 working face and the key factors to control the deformation of gangue filling, the mining system and process in 1210 working face were optimized. According to the measured surface rock movement, raw gangue filling mining technology can meet the requirements of surface building protection level. Especially, this paper provides a method to quantitatively calculate the equivalent mining height (EMH) of raw gangue filling and its mining deformation, which has reference significance for old mining areas.
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
基金Projects(51304145,51301118,51304152)supported by the National Natural Science Foundation of ChinaProject(2013JQ7016)supported by the Natural Science Foundation of Shannxi Province,China+1 种基金Project(2013T002)supported by the Science Foundation of Taiyuan University of Technology,ChinaProject(2013JK0904)supported by Shannxi Provincial Education Department,China
文摘A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.
基金supported by The Second Doctor Innovative Projects of Shenzhen Institute of Information Technology (BC2009013)
文摘In lost foam casting (LFC), the distribution of polymer beads during the bead filling process is not uniform, and the collision between polymer beads determines the distribution of two-phase flow of gas and solid. The interaction between the gas and solid phases reveals as coupling effect of the force that gas exerts on particles or vice versa, or that among particles. The gas-solid flow in filling process is nonlinearity, which makes the coupling effect an essential point to carry out a simulation properly. Therefore, information of each particle's motion is important for acquiring the law of filling process. In bead filling process, compressed air is pressed into mold cavity, and discharged from gas vent, creating a pressure difference between outer and inner space near the gas vent. This pressure difference directly changes the spatial distribution and motion trace of gas and solid phases. In this paper, Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) are employed to simulate the fluid dynamic character based on Newton's Third Law of Motion. The simulation results of some casting products such as pressure plate and valve handle are compared with the result obtained from practical experiment in order to test the feasibility of DEM. The comparison shows that this DEM method can be a very promising tool in the mould filling simulation of beads' movement.
文摘Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting' s mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.
基金The National High Technology Research and Development Program of China(863Program)(2006AA04Z140)The National Natural Science Foundation of China(NSFC)(50605024)
文摘In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.
文摘The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality of aluminum castings produced in permanent molds.An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed.Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems.The investigation discovers that there are many influencing factors on the mold filling process.This paper focuses its research on some of the factors,such as the dimensions of the vertical riser and slot thickness,as well as roughness of the coating layer.The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system.A bigger vertical riser,proper slot thickness and rougher coating can provide not only a better mold filling pattern,but also hot melt into the top of the cavity.A proper temperature gradient is obtainable,higher at the bottom and lower at the top of the casting cavity,which is in favor of feeding during casting solidification.
基金This project is supported by National Natural Science Foundation of China(No.50575209).
文摘The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory, and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.
基金supported by NCET050350the Program of Excellent Team in Harbin Institute of Technology
文摘The distribution of a magnetic field over an inductor used for sheet castings has been investigated experimentally.With an increase in height from the surface, the magnetic field density decreases according to the exponential law.In the transverse direction, the magnetic field density is approximately uniform except near the edges.The magnetic field density is direct proportional to the number of turns multiplied by the current in amperes.Ferro-magnetic material in the upper mould can enhance the magnetic field density.Under the electromagnetic force, the mould-filling process of sheet casings has been studied by physical simulation method.The difference in filling capability between gravity casting and travelling magnetic field casting has been studied.The electromagnetic force can enhance the filling process, but it also brings a problem.With an increase in the magnetic field density, the surface quality of the aluminum alloy sheet castings becomes poor.The reason is discussed.
基金supported by the National Science Foundation of China (Grant No. 41676050)。
文摘Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags.