期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Self-standing oxygen-deficient a-MoO_(3-x)nanoflake arrays as 3D cathode for advanced all-solid-state thin film lithium batteries 被引量:6
1
作者 Shuo Sun Qiuying Xia +6 位作者 Jizi Liu Jing Xu Feng Zan Jili Yue Serguei V.Savilov Valery V.Lunin Hui Xia 《Journal of Materiomics》 SCIE EI 2019年第2期229-236,共8页
Compared with the planar two-dimensional(2D)all-solid-state thin film batteries(TFBs),threedimensional(3D)all-solid-state TFBs with interdigitated contact between electrode and electrolyte possess great advantage in a... Compared with the planar two-dimensional(2D)all-solid-state thin film batteries(TFBs),threedimensional(3D)all-solid-state TFBs with interdigitated contact between electrode and electrolyte possess great advantage in achieving both high energy and power densities.Herein,we report a facile fabrication of vertically aligned oxygen-deficient a-MoO3-x nanoflake arrays(3D MO_(x))using metal Mo target by direct current(DC)magnetron sputtering.By utilizing the 3D MO_(x)cathode,amorphous lithium phosphorus oxynitride solid electrolyte,and lithium thin film anode,3D solid-state TFBs have been successfully fabricated,exhibiting high specific capacity(266 mAh g^(-1)at 50 mA g^(-1)),good rate performance(110 mAh g^(-1)at 1000mA g^(-1)),and excellent cycle performance(92.7%capacity retention after 1000 cycles)in comparison with the 2D TFBs using the planar MO_(x)thin film as cathode.The superior electrochemical performance of the 3D TFBs can be attributed to the 3D architecture of the cathode,maximizing the cathode/electrolyte interface while retaining the short Lit diffusion length.The charge/discharge measurements of the 3D MO_(x)cathode in liquid electrolyte,however,exhibit fast capacity fading,demonstrating the advantage of using transition metal oxide as cathode in solid-state batteries. 展开更多
关键词 Thin film batteries All solid-state Li batteries MoO_(3) Nanoflake arrays 3D cathode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部