The hydrogenated diamond like carbon(DLC) films were formed on conductive glass substrate by deposition in DMF using a pulse modulated source. The X ray photoelectron spectroscopy results of the films showed that the ...The hydrogenated diamond like carbon(DLC) films were formed on conductive glass substrate by deposition in DMF using a pulse modulated source. The X ray photoelectron spectroscopy results of the films showed that the main composition of the films are carbon. The Raman and IR spectra indicated the existence of hydrogen in form of sp 3 C in the film. From the Raman spectra indicated the formation of DLC in most regions of the film and also possible diamond deposits. The films showed high transmission ratio (>70%) in 330~2000 nm and electrical resistivity of 10 10 Ω·cm.展开更多
The ultrafine structure of tendons deposits formed in three patients, males aged 52 and 61 years and a female aged 71 years were evaluated by atomic force microscopy. Three distinctly different structures of deposit s...The ultrafine structure of tendons deposits formed in three patients, males aged 52 and 61 years and a female aged 71 years were evaluated by atomic force microscopy. Three distinctly different structures of deposit surface were identified: (i) compact, smooth and uneven surface composed of closely packed nanoparticles of diameter 30 nm;(ii) surfaces consisting of plate-like crystalline particles about 30 nm thick that formed larger entities divided by deep depressions;(iii) rough surface formed by individual or closely attached elongated needle-like particles with elliptical cross-section of diameter about 30 nm. These surface structures were developed by different formation mechanisms: (i) Aggregation of Posner’s clusters into nanoparticles formed on biological calcific able surfaces and in the bulk of body fluid surrounding the deposits that subsequently settled onto the deposit surface;(ii) Regular crystal growth on surface nuclei generated at low supersaturation of body fluid with respect to the phosphatic phase and/or in a narrow cavity containing a very limited volume of liquid;(iii) Solution mediated re-crystallization of the upper layers of a deposit or unstable crystalline growth governed by volume diffusion of building units to the particle tip. Small rods, 40 nm wide and from 100 to 300 nm long, with no apparent order were detected only on the surface of deposit formed in the female patient. These rods could be debris of collagen fibres that disintegrated into individual building units (macromolecules) with some showing breakdown into smaller fragments.展开更多
Magnetically soft Fe-Co-based nanocrystalline alloy films were produced by two preparation methods:One using a new energetic cluster deposition technique and another using a conventional magnetron sputtering technique...Magnetically soft Fe-Co-based nanocrystalline alloy films were produced by two preparation methods:One using a new energetic cluster deposition technique and another using a conventional magnetron sputtering technique.Their structural,static magnetic properties and high-frequency magnetic characteristics were investigated.In the energetic cluster deposition method,by applying a high-bias voltage to a substrate,positively charged clusters in a cluster beam were accelerated electrically and deposited onto a negatively biased substrate together with neutral clusters from the same cluster source,to form a high-density Fe-Co alloy cluster-assembled film with good high-frequency magnetic characteristics.In the conventional magnetron sputtering method,only by rotating substrate holder and without applying a static inducing magnetic field on the substrates,we produced Fe-Co-based nanocrystalline alloy films with a remarkable in-plane uniaxial magnetic anisotropy and a good soft magnetic property.The obtained Fe-Co-O,Fe-Co-Ti-N,and Fe-Co-Cr-N films all revealed a high real permeability exceeding 500 at a frequency up to 1.2 GHz.This makes Fe-Co-based nanocrystalline alloy films potential candidates as soft magnetic thin film materials for the high-frequency applications.展开更多
文摘The hydrogenated diamond like carbon(DLC) films were formed on conductive glass substrate by deposition in DMF using a pulse modulated source. The X ray photoelectron spectroscopy results of the films showed that the main composition of the films are carbon. The Raman and IR spectra indicated the existence of hydrogen in form of sp 3 C in the film. From the Raman spectra indicated the formation of DLC in most regions of the film and also possible diamond deposits. The films showed high transmission ratio (>70%) in 330~2000 nm and electrical resistivity of 10 10 Ω·cm.
基金This study was supported by a grant from the University of the Balearic Islands and by project CTQ2010-18271/PPQ from the Ministerio de Ciencia e Innovación(Gobierno de Espana),FEDER funds(European Union)the project grant 9/2011 from the Conselleria d’Educació,Cultura i Universitat(Govern de les Illes Balears).
文摘The ultrafine structure of tendons deposits formed in three patients, males aged 52 and 61 years and a female aged 71 years were evaluated by atomic force microscopy. Three distinctly different structures of deposit surface were identified: (i) compact, smooth and uneven surface composed of closely packed nanoparticles of diameter 30 nm;(ii) surfaces consisting of plate-like crystalline particles about 30 nm thick that formed larger entities divided by deep depressions;(iii) rough surface formed by individual or closely attached elongated needle-like particles with elliptical cross-section of diameter about 30 nm. These surface structures were developed by different formation mechanisms: (i) Aggregation of Posner’s clusters into nanoparticles formed on biological calcific able surfaces and in the bulk of body fluid surrounding the deposits that subsequently settled onto the deposit surface;(ii) Regular crystal growth on surface nuclei generated at low supersaturation of body fluid with respect to the phosphatic phase and/or in a narrow cavity containing a very limited volume of liquid;(iii) Solution mediated re-crystallization of the upper layers of a deposit or unstable crystalline growth governed by volume diffusion of building units to the particle tip. Small rods, 40 nm wide and from 100 to 300 nm long, with no apparent order were detected only on the surface of deposit formed in the female patient. These rods could be debris of collagen fibres that disintegrated into individual building units (macromolecules) with some showing breakdown into smaller fragments.
基金supported by the National Natural Science Foundation of China (Grant Nos.50671087,50971108)the National Outstanding Youth Science Foundation of China (Grant No.50825101)the Intellectual Cluster Project of the Ministry of Education,Culture,Sports,Science,and Technology,Japan,Aichi Prefecture,Nagoya City and Aichi Science and Technology Foundation
文摘Magnetically soft Fe-Co-based nanocrystalline alloy films were produced by two preparation methods:One using a new energetic cluster deposition technique and another using a conventional magnetron sputtering technique.Their structural,static magnetic properties and high-frequency magnetic characteristics were investigated.In the energetic cluster deposition method,by applying a high-bias voltage to a substrate,positively charged clusters in a cluster beam were accelerated electrically and deposited onto a negatively biased substrate together with neutral clusters from the same cluster source,to form a high-density Fe-Co alloy cluster-assembled film with good high-frequency magnetic characteristics.In the conventional magnetron sputtering method,only by rotating substrate holder and without applying a static inducing magnetic field on the substrates,we produced Fe-Co-based nanocrystalline alloy films with a remarkable in-plane uniaxial magnetic anisotropy and a good soft magnetic property.The obtained Fe-Co-O,Fe-Co-Ti-N,and Fe-Co-Cr-N films all revealed a high real permeability exceeding 500 at a frequency up to 1.2 GHz.This makes Fe-Co-based nanocrystalline alloy films potential candidates as soft magnetic thin film materials for the high-frequency applications.