This paper is centered on the extent to which contemporary Chinese science fiction is related to ancient Chinese mythologies according to the previous scholarly discussion and how these ancient mythologies are utilize...This paper is centered on the extent to which contemporary Chinese science fiction is related to ancient Chinese mythologies according to the previous scholarly discussion and how these ancient mythologies are utilized specifically in the futuristic narratives of modern Chinese science fiction.By referring to academic dialogues,this paper argues that ancient mythologies can be recreated in modern science fiction and create modern mythologies in futuristic narratives to present or deal with modern human fears.Based on this argument,this paper then continues to explore what kinds of modern mythologies science fiction might deliver.The Chinese film The Wandering Earth(2019)will be discussed in terms of its mythological symbols and metaphors.This paper proposes a new approach through which to reconnect past stories with futuristic narratives and builds a frame in which to contextualize ancient mythologies in contemporary Chinese culture.展开更多
The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) reson...The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) resonance originated from Ag nanostructures is significantly decreased, i.e. the optical absorption is enhanced. The results show that the average reflection value of the amorphous silicon films in the wavelength range of 900-1200 nm could be decreased by 11.4%. Moreover, the reduction of the reflection is found to be mainly dependent on the size of the Ag nanostructures, which is related to the island sizes, i.e. the LPP's resonance peak position.展开更多
The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-...The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-thermionic refrigeration model. The results show that the maximum refrigeration power in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/n-BaTiO3 system increases dramatically with the increase of doping density from 1.0×1018 cm-3 to 5.0×1019 cm-3 while that in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is nearly a constant. It is found that the different Auger coefficients and the competition between radiative power and dissipation power lead to the different behavior of the maximum refrigeration power dependence on the doping density of the two systems.展开更多
Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of sil...Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization.展开更多
By means of the slave-boson mean-field approximation, we theoretically investigate the Kondo and Coulomb interaction effects in spin-polarized transport through two coupled quantum dots coupled to two ferromagnetic le...By means of the slave-boson mean-field approximation, we theoretically investigate the Kondo and Coulomb interaction effects in spin-polarized transport through two coupled quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The density of states is calculated in the Kondo regime for the effect of the interdot Coulomb repulsion with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb interaction between quantum dots greatly influence the density of states of the dots.展开更多
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends...We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.展开更多
Detection of the second harmonic response of magnetic nanostructures to an ac current is shown to be a very sensitive probe of the magnetization reversal process. A temperature oscillation is obtained by Joule heating...Detection of the second harmonic response of magnetic nanostructures to an ac current is shown to be a very sensitive probe of the magnetization reversal process. A temperature oscillation is obtained by Joule heating instead of using a laser as the heat source, as in thermo-galvanic voltage measurements (TGV). Joule heating is used to produce a large local temperature gradient in asymmetric Co/Cu/Co spin valves. Evidence is found for an effect of a heat current on magnetization.展开更多
An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitra...An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.展开更多
We investigate theoretically the population dynamics and the second-order correlation functions of photon emissions from the biexciton-exciton system of a single quantum dot with excitation from pulses to continuous w...We investigate theoretically the population dynamics and the second-order correlation functions of photon emissions from the biexciton-exciton system of a single quantum dot with excitation from pulses to continuous wave. The dynamic equations of the correlation functions are deduced by applying quantum regression theorem to optical Bloch equations. The influences of excitation pulse width on the correlation function have been discussed in detail.展开更多
Optical properties of zinc-blende InGaN/GaN Q W structures are investigated using the multiband effective-mass theory. The transition wavelength values at 300 K ranged from 440 to 570nm in the investigated range of th...Optical properties of zinc-blende InGaN/GaN Q W structures are investigated using the multiband effective-mass theory. The transition wavelength values at 300 K ranged from 440 to 570nm in the investigated range of the In composition and the well width. The theoretical wavelengths show reasonable agreement with the experimental results. The optical gain decreases with the increasing well width. This is mainly due to the reduction in the quasi-Fermi-level separation because the optical matrix element increases with the well width.展开更多
By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes)...By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.展开更多
We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55μm at room temperature. Time-resolved PL m...We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55μm at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20 K.展开更多
We report a new method for large-scale production of GaMnN nanobars, by ammoniating Ga2O3 films doped with Mn under flowing ammonia atmosphere at 1000oC. The Mn-doped GaN sword-like nanobars are a single-crystal hexag...We report a new method for large-scale production of GaMnN nanobars, by ammoniating Ga2O3 films doped with Mn under flowing ammonia atmosphere at 1000oC. The Mn-doped GaN sword-like nanobars are a single-crystal hexagonal structure, containing Mn up to 5.43 atom%. Thickness is about 100 nm and with a width of 200-400 nm. The nanobars are characterized by x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and photoluminescence. The GaN nanobars show two emission bands with a well-defined PL peak at 388 nm and 409 nm respectively. The large distinct redshift (409 nm) are comparable to pure GaN(370 nm) at room temperature. The red-shift photoluminescence is due to Mn doping. The growth mechanism of crystalline GaN nanobars is discussed briefly.展开更多
We obtain low-density charged InAs quantum dots with an emission wavelength below 1μm using a low InAs growth rate. The quantum dots have a bimodal size distribution with an emission wavelength of around 1340nm and 1...We obtain low-density charged InAs quantum dots with an emission wavelength below 1μm using a low InAs growth rate. The quantum dots have a bimodal size distribution with an emission wavelength of around 1340nm and 1000nm, respectively. We observe the photoluminescence of the singly charged exciton in the modulation doped quantum dots in 77K.展开更多
We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on var...We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm, and several micrometers in length. NW orientations strongly depend on substrate crystal orientation, and follow the substrate symmetry. By using conductive-AFM (c-AFM), the electron transport properties of one single NW were measured, the resistivity of crystalline nickel silicide NW was estimated to be 2×10-2Ω・cm.展开更多
We report the chemical self-assembly growth of Au nanocrystals on atomic-layer-deposited HfO2 films aminosilanized by (3-Aminopropyl)-trimethoxysilane aforehand for memory applications. The resulting Au nanocrystals...We report the chemical self-assembly growth of Au nanocrystals on atomic-layer-deposited HfO2 films aminosilanized by (3-Aminopropyl)-trimethoxysilane aforehand for memory applications. The resulting Au nanocrystals show a density of about 4 × 10^11 cm^-2 and a diameter range of 5-8nm. The metal-oxide-silicon capacitor with double-layer Au nanocrystals embedded in HfO2 dielectric exhibits a large C - V hysteresis window of 11.9 V for ±11 V gate voltage sweeps at 1MHz, a flat-band voltage shift of 1.5 V after the electrical stress under 7 V for 1ms, a leakage current density of 2.9 × 10^-8 A/cm^-2 at 9 V and room temperature. Compared to single-layer Au nanocrystals, the double-layer Au nanocrystals increase the hysteresis window significantly, and the underlying mechanism is thus discussed.展开更多
We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is ...We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.展开更多
Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-...Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.展开更多
An important motif in science fiction films is the encounter between different species--usually between human kind and alien kind. In films of this type, both anxieties and hopes are imagined and exhibited. By examini...An important motif in science fiction films is the encounter between different species--usually between human kind and alien kind. In films of this type, both anxieties and hopes are imagined and exhibited. By examining three science fiction films made in Hong Kong, Taiwan, and Chinese mainland in the late 1970s and early 1980s--that is, The Super Inframan (Zhongguo chaoren, 1975), God of War (Zhanshen, 1976), and Death Ray on Coral Island (Shanhudao shang de siguang, 1980)--this paper analyzes the ideologies and anxieties behind such encounters. These films present different "Chinese" pictures, revealing the fluidity of Chineseness, as well as the variety of frameworks within the genre of Chinese-language science fiction films. In this time of globalization, it is important to examine these early science fiction films in order to explore the relation between local social concerns and their artistic presentation.展开更多
The polarizabilities of DNA in transverse direction and CdSe semiconductor quantum dots (QDs) deposited on mica surface are compared by means of electrostatic force microscopy (EFM). We observe clear EFM-phase shi...The polarizabilities of DNA in transverse direction and CdSe semiconductor quantum dots (QDs) deposited on mica surface are compared by means of electrostatic force microscopy (EFM). We observe clear EFM-phase shift over CdSe QDs, while no obvious signal on DNA is detected, suggesting that DNA molecules is an electrical insulator.展开更多
文摘This paper is centered on the extent to which contemporary Chinese science fiction is related to ancient Chinese mythologies according to the previous scholarly discussion and how these ancient mythologies are utilized specifically in the futuristic narratives of modern Chinese science fiction.By referring to academic dialogues,this paper argues that ancient mythologies can be recreated in modern science fiction and create modern mythologies in futuristic narratives to present or deal with modern human fears.Based on this argument,this paper then continues to explore what kinds of modern mythologies science fiction might deliver.The Chinese film The Wandering Earth(2019)will be discussed in terms of its mythological symbols and metaphors.This paper proposes a new approach through which to reconnect past stories with futuristic narratives and builds a frame in which to contextualize ancient mythologies in contemporary Chinese culture.
基金Supported by the National Basic Research Program of China under Grant No 2007CB613403, and the Natural Science Foundation of Zhejiang Province (Y1080068).
文摘The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) resonance originated from Ag nanostructures is significantly decreased, i.e. the optical absorption is enhanced. The results show that the average reflection value of the amorphous silicon films in the wavelength range of 900-1200 nm could be decreased by 11.4%. Moreover, the reduction of the reflection is found to be mainly dependent on the size of the Ag nanostructures, which is related to the island sizes, i.e. the LPP's resonance peak position.
基金Supported by the National Natural Science Foundation of China and the National Basic Research Program of China
文摘The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-thermionic refrigeration model. The results show that the maximum refrigeration power in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/n-BaTiO3 system increases dramatically with the increase of doping density from 1.0×1018 cm-3 to 5.0×1019 cm-3 while that in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is nearly a constant. It is found that the different Auger coefficients and the competition between radiative power and dissipation power lead to the different behavior of the maximum refrigeration power dependence on the doping density of the two systems.
文摘Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization.
文摘By means of the slave-boson mean-field approximation, we theoretically investigate the Kondo and Coulomb interaction effects in spin-polarized transport through two coupled quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The density of states is calculated in the Kondo regime for the effect of the interdot Coulomb repulsion with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb interaction between quantum dots greatly influence the density of states of the dots.
基金Sponsored by the National Natural Science Foundation of China under Grant No 10804058, the Natural Science Foundation of Ningbo under Grant No 2009A610017, and the K. C. Wong Magna Fund in Ningbo University.
文摘We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.
文摘Detection of the second harmonic response of magnetic nanostructures to an ac current is shown to be a very sensitive probe of the magnetization reversal process. A temperature oscillation is obtained by Joule heating instead of using a laser as the heat source, as in thermo-galvanic voltage measurements (TGV). Joule heating is used to produce a large local temperature gradient in asymmetric Co/Cu/Co spin valves. Evidence is found for an effect of a heat current on magnetization.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60678022 and 10704001, the Specialized Research Pund for the Doctoral Program of Higher Education under Grant No 20060357008, the Key Program of the Education Department of Anhui Province under Grant Nos KJ2009A048Z, the Talent Project of the Anhui Province for Outstanding Youth under Grant Nos 2010SQRL153ZD and 2010SQRL187.
文摘An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10534030 and 10874134, the National Basic Research Program of China under Grant No 2006CB921504, and the Key Project of Ministry of Education (708063).
文摘We investigate theoretically the population dynamics and the second-order correlation functions of photon emissions from the biexciton-exciton system of a single quantum dot with excitation from pulses to continuous wave. The dynamic equations of the correlation functions are deduced by applying quantum regression theorem to optical Bloch equations. The influences of excitation pulse width on the correlation function have been discussed in detail.
文摘Optical properties of zinc-blende InGaN/GaN Q W structures are investigated using the multiband effective-mass theory. The transition wavelength values at 300 K ranged from 440 to 570nm in the investigated range of the In composition and the well width. The theoretical wavelengths show reasonable agreement with the experimental results. The optical gain decreases with the increasing well width. This is mainly due to the reduction in the quasi-Fermi-level separation because the optical matrix element increases with the well width.
文摘By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.
基金Supported by the National Natural Science Foundation of China under Grant No 60676054.
文摘We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55μm at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20 K.
基金Supported by the Key Research Program of the National Natural Science Foundation of China under Grant Nos 90201025 and 90301002.
文摘We report a new method for large-scale production of GaMnN nanobars, by ammoniating Ga2O3 films doped with Mn under flowing ammonia atmosphere at 1000oC. The Mn-doped GaN sword-like nanobars are a single-crystal hexagonal structure, containing Mn up to 5.43 atom%. Thickness is about 100 nm and with a width of 200-400 nm. The nanobars are characterized by x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and photoluminescence. The GaN nanobars show two emission bands with a well-defined PL peak at 388 nm and 409 nm respectively. The large distinct redshift (409 nm) are comparable to pure GaN(370 nm) at room temperature. The red-shift photoluminescence is due to Mn doping. The growth mechanism of crystalline GaN nanobars is discussed briefly.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60625405 and 10734060, and the National Basic Research Program of China under Grant No 2006CB921504.
文摘We obtain low-density charged InAs quantum dots with an emission wavelength below 1μm using a low InAs growth rate. The quantum dots have a bimodal size distribution with an emission wavelength of around 1340nm and 1000nm, respectively. We observe the photoluminescence of the singly charged exciton in the modulation doped quantum dots in 77K.
基金Supported by the National Natural Science Foundation of China under Grant No 10874016.
文摘We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm, and several micrometers in length. NW orientations strongly depend on substrate crystal orientation, and follow the substrate symmetry. By using conductive-AFM (c-AFM), the electron transport properties of one single NW were measured, the resistivity of crystalline nickel silicide NW was estimated to be 2×10-2Ω・cm.
文摘We report the chemical self-assembly growth of Au nanocrystals on atomic-layer-deposited HfO2 films aminosilanized by (3-Aminopropyl)-trimethoxysilane aforehand for memory applications. The resulting Au nanocrystals show a density of about 4 × 10^11 cm^-2 and a diameter range of 5-8nm. The metal-oxide-silicon capacitor with double-layer Au nanocrystals embedded in HfO2 dielectric exhibits a large C - V hysteresis window of 11.9 V for ±11 V gate voltage sweeps at 1MHz, a flat-band voltage shift of 1.5 V after the electrical stress under 7 V for 1ms, a leakage current density of 2.9 × 10^-8 A/cm^-2 at 9 V and room temperature. Compared to single-layer Au nanocrystals, the double-layer Au nanocrystals increase the hysteresis window significantly, and the underlying mechanism is thus discussed.
基金Supported by the Natural Science Foundation of China under Grant Nos 10534030 and 10874134, the National Basic Research Program of China under Grant No 2006CB921504, and Key Project of Ministry of Education of China under Grant No 708063.
文摘We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.
基金Supported by the National Bauic Research Program of China under Grant No 2006CB202600, Funds of Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No KGCX2-YW-326, the National Natural Science Foundation of China under Grant No 20703046, and the National Science Foundation of Nantong University under Grant No 08Z067.
文摘Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.
文摘An important motif in science fiction films is the encounter between different species--usually between human kind and alien kind. In films of this type, both anxieties and hopes are imagined and exhibited. By examining three science fiction films made in Hong Kong, Taiwan, and Chinese mainland in the late 1970s and early 1980s--that is, The Super Inframan (Zhongguo chaoren, 1975), God of War (Zhanshen, 1976), and Death Ray on Coral Island (Shanhudao shang de siguang, 1980)--this paper analyzes the ideologies and anxieties behind such encounters. These films present different "Chinese" pictures, revealing the fluidity of Chineseness, as well as the variety of frameworks within the genre of Chinese-language science fiction films. In this time of globalization, it is important to examine these early science fiction films in order to explore the relation between local social concerns and their artistic presentation.
基金Supported by the National Natural Science Foundation under Grant No 10604034, the Natural Science Foundation of Zhejiang Province (Y606309), Ningbo Natural Science Foundation (2006A610046), and K. C. Wong Magna Fund in Ningbo University.
文摘The polarizabilities of DNA in transverse direction and CdSe semiconductor quantum dots (QDs) deposited on mica surface are compared by means of electrostatic force microscopy (EFM). We observe clear EFM-phase shift over CdSe QDs, while no obvious signal on DNA is detected, suggesting that DNA molecules is an electrical insulator.