Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its p...Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.展开更多
The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. Th...The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. These aggregates display well self-assembly characteristics. The size of Sunflower-like aggregates is between 12 and 44 μm. Each sunflower-like aggregate is surrounded with many adjacent wings-'petals'. The structure of central region of the 'sunflower' is obviously difFerent from that of the 'petal'. Electron spectroscopy for chemical analysis (ESCA) was employed in determining the chemical valence of the thin film. Self-organization efFect is used to explain the coring growth process of CdI2 thin film展开更多
A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and...A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.展开更多
Three electrodeposited Fe-Ni,Fe-Co,and Fe-Ni-Co cores of thin film transformer are prepared on silicon(100) substrates,which are sputtered a 90 nm thick film of Cu acting as the seed layer.The core films consisting of...Three electrodeposited Fe-Ni,Fe-Co,and Fe-Ni-Co cores of thin film transformer are prepared on silicon(100) substrates,which are sputtered a 90 nm thick film of Cu acting as the seed layer.The core films consisting of Fe-Ni 20:80,Fe-Co 60:40 and Fe-Ni-Co 10:60:30,respectively,are deposited using direct current electrodeposition.The surface texture,electrical and magnetic properties are surveyed by scanning electron microscopy(SEM),superconducting quantum interference device(SQUID),etc.The wave transmission ability and efficiency of thin film transformer with these cores,inputting the sine wave,are compared.All the analyses indicate that FeNi alloy films display the optimal magnetic properties and excellent transformer performance.展开更多
基金National Natural Science Foundation of China(No.60576020,No.60606014).
文摘Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.
文摘The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. These aggregates display well self-assembly characteristics. The size of Sunflower-like aggregates is between 12 and 44 μm. Each sunflower-like aggregate is surrounded with many adjacent wings-'petals'. The structure of central region of the 'sunflower' is obviously difFerent from that of the 'petal'. Electron spectroscopy for chemical analysis (ESCA) was employed in determining the chemical valence of the thin film. Self-organization efFect is used to explain the coring growth process of CdI2 thin film
文摘A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.
基金supported by the National Natural Science Foundation of China (Grant No. 60874101)
文摘Three electrodeposited Fe-Ni,Fe-Co,and Fe-Ni-Co cores of thin film transformer are prepared on silicon(100) substrates,which are sputtered a 90 nm thick film of Cu acting as the seed layer.The core films consisting of Fe-Ni 20:80,Fe-Co 60:40 and Fe-Ni-Co 10:60:30,respectively,are deposited using direct current electrodeposition.The surface texture,electrical and magnetic properties are surveyed by scanning electron microscopy(SEM),superconducting quantum interference device(SQUID),etc.The wave transmission ability and efficiency of thin film transformer with these cores,inputting the sine wave,are compared.All the analyses indicate that FeNi alloy films display the optimal magnetic properties and excellent transformer performance.