We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the nu...We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.展开更多
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t...We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.展开更多
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex...We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.展开更多
Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range o...Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range of400-500 K shows the extended state conduction.The conductivity data in the temperature range of 150-300 K shows the multi-phonon hopping conduction.The Berthelot-type conduction dominates in the temperature range of 50-150 K.The conductivity of the films in the temperature range about 〈 50 K is described in terms of variable-range hopping conduction.In low temperatures,the localized density of state around Fermi level(F)for the film deposition with 3.92% nickel has a maximum value of about 56.2×10^(17)cm^(-3)eV^(-1) with the minimum average hopping distance of about 3.43 × 10^(-6) cm.展开更多
We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of...We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51202063 and 51177003)Hubei Provincial Department of Education(No.Q20111009)
文摘We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.
基金supported by the HK Innovation and Technology Fund (ITS/004/14)the HK-RGC General Research Funds (GRE No. HKUST 606511)
文摘We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.
文摘We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.
文摘Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range of400-500 K shows the extended state conduction.The conductivity data in the temperature range of 150-300 K shows the multi-phonon hopping conduction.The Berthelot-type conduction dominates in the temperature range of 50-150 K.The conductivity of the films in the temperature range about 〈 50 K is described in terms of variable-range hopping conduction.In low temperatures,the localized density of state around Fermi level(F)for the film deposition with 3.92% nickel has a maximum value of about 56.2×10^(17)cm^(-3)eV^(-1) with the minimum average hopping distance of about 3.43 × 10^(-6) cm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374033,11774030,51735001 and 61775016the Fundamental Research Funds for the Central Universities under Grant No 2017CX10007
文摘We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction.