Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th...Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.展开更多
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum depo...Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.展开更多
A series of TbDyFe films were prepared by DC magnetron sputtering. The effects of substrate temperature and annealing temperature on the phase structure and the magnetic properties of the sample films were investigate...A series of TbDyFe films were prepared by DC magnetron sputtering. The effects of substrate temperature and annealing temperature on the phase structure and the magnetic properties of the sample films were investigated. The an-nealing treatment has a significant influence on the microstructure and the magnetic properties of the sample. The results obtained by XRD indicate that the films deposited at a temperature lower than 525℃ are amorphous and have an easy magnetization direction perpendicular to the film plane. An RFe2 phase is formed in the sample annealed at 550℃ and the residual phases observed are Fe and rare earth oxide. The magnetic properties Hc and Mr/Ms of the film annealed at 550℃ obtain the maximum values,for which the formation of the RFe2 phase is mainly responsible. An annealing treatment leads to a rotation of the sample’s easy axis from being parallel to the film surface to becoming vertical.展开更多
The conventional analytical method of predicting strain in a thin film under bending is restricted to the uniform material assumption, while in flexible electronics, the film/substrate structure is widely used with mi...The conventional analytical method of predicting strain in a thin film under bending is restricted to the uniform material assumption, while in flexible electronics, the film/substrate structure is widely used with mismatched material properties taken into account. In this paper,a piecewise model is proposed to analyze the axial strain in a thin film of flexible electronics with the shear modification factor and principle of virtual work. The excellent agreement between analytical prediction and finite element results indicates that the model is capable of predicting the strain of the film/substrate structure in flexible electronics, whose mechanical stability and electrical performance is dependent on the strain state in the thin film.展开更多
We report the epitaxial growth of single-crystalline Cd Te(100) thin films on Ga As(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three ...We report the epitaxial growth of single-crystalline Cd Te(100) thin films on Ga As(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three different reconstructed surfaces are realized, and their influence on the subsequent Cd Te growth is investigated. More importantly, we find that both the presence of a thin native oxide layer and the formation of Ga-As-Te bonds at the interface enable the growth along the(100) orientation and help to reduce the threading dislocations and other defects. Our results provide new opportunities for compound semiconductor heterogeneous growth via interfacial engineering.展开更多
LiMn2O4 thin films are deposited on gold coated polyimide flexible substrates using RF magnetron sputtering technique maintained at a moderate substrate temperature of 300℃. The films exhibited characteristic peaks w...LiMn2O4 thin films are deposited on gold coated polyimide flexible substrates using RF magnetron sputtering technique maintained at a moderate substrate temperature of 300℃. The films exhibited characteristic peaks with predominant (111) orientation representing cubic spinel structure of Fd3m symmetry with an evaluated lattice parameter of 8.199 ?. The surface topography of films exhibited pyramidal shaped grains oriented vertical to the substrate surface with root mean square surface roughness of 90 nm. The Pt/LiMn2O4 electrochemical cell in aqueous region exhibited two step de-insertion and insertion kinetics of Li ion during oxidation and reduction reaction with an initial discharge capacity of 36 μAh?cm_2?μm_1.展开更多
icrostructures of two Yba_2Cu_3O_(7-y) (YBCO) film deposited on metal substrate (HastelloyC) with yttriastabilized zirconia (YSZ) buffer layer were studied comparatively. Relation of microstructure with deposition con...icrostructures of two Yba_2Cu_3O_(7-y) (YBCO) film deposited on metal substrate (HastelloyC) with yttriastabilized zirconia (YSZ) buffer layer were studied comparatively. Relation of microstructure with deposition condition was also been discussed. The YSZ buffer layer with a low depositing rate is dense, even, textured and wellbonded to the substrate. On the contrary, the YSZ layer deposited with a high rate is loose and bonded badly to the substrate. Property and surface grain size of YBCO film are related to the substrate temperature (Ts) in the deposition process.展开更多
Microstructures of YBa_2Cu_3O_(7-y)(YBCO) film on flexible metal substrate with yttriastabilized zirconia(YSZ) buffer layer prepared by magnetron sputtering technique have been studied in this paper using transmission...Microstructures of YBa_2Cu_3O_(7-y)(YBCO) film on flexible metal substrate with yttriastabilized zirconia(YSZ) buffer layer prepared by magnetron sputtering technique have been studied in this paper using transmission electron microscopy(TEM). A critical temperature(Tc) and a critical current density(Jc) of the YBCO film are 91 K and 2×103 A/cm2 at 77 K, 0 T respectively. Bonded steadfastly to the substrate of nickel alloy(HastelloyC), the dense, even and textured YSZ layer with fine crystal grains is about 12 μm thick. With an uneven thickness of about 500 nm, the YBCO layer is sometimes weakbonded to the YSZ layer. Impurities which occasionally led to cracks were observed at the YSZ/YBCO interface.展开更多
TiO2-CeO2 films were deposited on soda-lime glass substrates at varied substrate temperatures by rf magnetron sputtering using 40% molar TiO2-60% molar CeO2 ceramic target in Ar:O2=95:5 atmosphere.The structure,surf...TiO2-CeO2 films were deposited on soda-lime glass substrates at varied substrate temperatures by rf magnetron sputtering using 40% molar TiO2-60% molar CeO2 ceramic target in Ar:O2=95:5 atmosphere.The structure,surface composition,UV-visible spectra of the films were measured by scanning electron microscopy and X-ray diffraction,and X-ray photoelectron spectroscopy,respectively.The experimental results show that the films are amorphous,there are only Ti^4+ and Ce^4+ on the surface of the films,the obtained TiO2-CeO2 films shou a good uniformity and high densification,and the films deposited on the glass can shield ultraviolet light without significant absorpition of visible light,the films deposited on substrates at room temperature and 220℃ absorb UV effectively.展开更多
The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared ...The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal α-AI2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the α-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and 0-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-AI bonds at the Cu/AI2O3 interface independent of the substrate orientation.展开更多
Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were in...Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.展开更多
CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are stu...CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.展开更多
A new kind of SiOx film on Al substrate,prepared by Ambient Pressure Chemical Vapor Deposition (APCVD) is reported in this paper. It is proposed that the SiOx particles as products of SiH4 and O2 reaction deposited on...A new kind of SiOx film on Al substrate,prepared by Ambient Pressure Chemical Vapor Deposition (APCVD) is reported in this paper. It is proposed that the SiOx particles as products of SiH4 and O2 reaction deposited on the heated Al surface, followed by close packing and further growth to form the thin film. The morphology, composition and microstructure of the film are characterized by SEM, XPS, XRD and HRTEM. The results show that the SiO, film comprises a majority of uncrystalline structure with a fraction of dispersed ordered zones and the atomic ratio of Si/O in the film is 1:1.60-1:1.75. The tests show that the film is well-bonded with the substrate.展开更多
Compositionally graded Ba1-xSrxTiO3 (BST) (x = 0-0.3) thin films were prepared on Pt/Ti/SiO2/Si substrate at different substrate temperatures ranging from 550 ℃ to 650 ℃ by radio-frequency (rf) magnetron sputtering....Compositionally graded Ba1-xSrxTiO3 (BST) (x = 0-0.3) thin films were prepared on Pt/Ti/SiO2/Si substrate at different substrate temperatures ranging from 550 ℃ to 650 ℃ by radio-frequency (rf) magnetron sputtering. The effect of substrate temperature on the preferential orientation, microstructures and dielectric properties of compositionally graded BST thin films was investigated by X-ray diffraction, scanning electron microscopy and dielectric frequency spectra, respectively. As the temperature increases, the preferential orientation evolves in the order: randomly orientation→ (111) → highly oriented (111) (α(111) = 60.2%). The surface roughness of the graded BST thin films varies with the substrate temperatures. No visible internal interface in the compositionally graded thin films can be observed in the cross-sectional SEM images. The graded BST thin films deposited at 650 ℃ possess the highest dielectric constant and dielectric loss, which are 408 and 0.013, respectively.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate s...To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate system is widely designed and applied,whose interfacial behavior dominates the strength and service life of thermoelectric devices.Herein,a theoretical model of a thermoelectric film bonded to a graded substrate is proposed.The interfacial shear stress,the normal stress in the thermoelectric film,and the stress intensity factors affected by various material and geometric parameters are comprehensively studied.It is found that adjusting the inhomogeneity parameter of the graded substrate,thermal conductivity,and current density of the thermoelectric film can reduce the risk of interfacial failure of the thermoelectric film/graded substrate system.Selecting a stiffer and thicker thermoelectric film is advantageous to the reliability of the thermoelectric film/graded substrate system.The results should be of great guiding significance for the present and upcoming applications of thermoelectric materials in various fields.展开更多
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by the National Natural Science Foundation of China(21972049,21573080)。
文摘Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
文摘Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.
基金the National Natural Science Foundation of China (No. 50271017).
文摘A series of TbDyFe films were prepared by DC magnetron sputtering. The effects of substrate temperature and annealing temperature on the phase structure and the magnetic properties of the sample films were investigated. The an-nealing treatment has a significant influence on the microstructure and the magnetic properties of the sample. The results obtained by XRD indicate that the films deposited at a temperature lower than 525℃ are amorphous and have an easy magnetization direction perpendicular to the film plane. An RFe2 phase is formed in the sample annealed at 550℃ and the residual phases observed are Fe and rare earth oxide. The magnetic properties Hc and Mr/Ms of the film annealed at 550℃ obtain the maximum values,for which the formation of the RFe2 phase is mainly responsible. An annealing treatment leads to a rotation of the sample’s easy axis from being parallel to the film surface to becoming vertical.
基金support from the National Natural Science Foundation of China(No.11172022)the support by the China Postdoctoral Science Foundation(No.2013M530907)the National Natural Science Foundation of China(No.11302039)
文摘The conventional analytical method of predicting strain in a thin film under bending is restricted to the uniform material assumption, while in flexible electronics, the film/substrate structure is widely used with mismatched material properties taken into account. In this paper,a piecewise model is proposed to analyze the axial strain in a thin film of flexible electronics with the shear modification factor and principle of virtual work. The excellent agreement between analytical prediction and finite element results indicates that the model is capable of predicting the strain of the film/substrate structure in flexible electronics, whose mechanical stability and electrical performance is dependent on the strain state in the thin film.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2017YFB0405704 and 2017YFA0305400the 1000-Young Talent Program of Chinathe Shanghai Sailing Program under Grant No 17YF1429200
文摘We report the epitaxial growth of single-crystalline Cd Te(100) thin films on Ga As(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three different reconstructed surfaces are realized, and their influence on the subsequent Cd Te growth is investigated. More importantly, we find that both the presence of a thin native oxide layer and the formation of Ga-As-Te bonds at the interface enable the growth along the(100) orientation and help to reduce the threading dislocations and other defects. Our results provide new opportunities for compound semiconductor heterogeneous growth via interfacial engineering.
文摘LiMn2O4 thin films are deposited on gold coated polyimide flexible substrates using RF magnetron sputtering technique maintained at a moderate substrate temperature of 300℃. The films exhibited characteristic peaks with predominant (111) orientation representing cubic spinel structure of Fd3m symmetry with an evaluated lattice parameter of 8.199 ?. The surface topography of films exhibited pyramidal shaped grains oriented vertical to the substrate surface with root mean square surface roughness of 90 nm. The Pt/LiMn2O4 electrochemical cell in aqueous region exhibited two step de-insertion and insertion kinetics of Li ion during oxidation and reduction reaction with an initial discharge capacity of 36 μAh?cm_2?μm_1.
文摘icrostructures of two Yba_2Cu_3O_(7-y) (YBCO) film deposited on metal substrate (HastelloyC) with yttriastabilized zirconia (YSZ) buffer layer were studied comparatively. Relation of microstructure with deposition condition was also been discussed. The YSZ buffer layer with a low depositing rate is dense, even, textured and wellbonded to the substrate. On the contrary, the YSZ layer deposited with a high rate is loose and bonded badly to the substrate. Property and surface grain size of YBCO film are related to the substrate temperature (Ts) in the deposition process.
文摘Microstructures of YBa_2Cu_3O_(7-y)(YBCO) film on flexible metal substrate with yttriastabilized zirconia(YSZ) buffer layer prepared by magnetron sputtering technique have been studied in this paper using transmission electron microscopy(TEM). A critical temperature(Tc) and a critical current density(Jc) of the YBCO film are 91 K and 2×103 A/cm2 at 77 K, 0 T respectively. Bonded steadfastly to the substrate of nickel alloy(HastelloyC), the dense, even and textured YSZ layer with fine crystal grains is about 12 μm thick. With an uneven thickness of about 500 nm, the YBCO layer is sometimes weakbonded to the YSZ layer. Impurities which occasionally led to cracks were observed at the YSZ/YBCO interface.
文摘TiO2-CeO2 films were deposited on soda-lime glass substrates at varied substrate temperatures by rf magnetron sputtering using 40% molar TiO2-60% molar CeO2 ceramic target in Ar:O2=95:5 atmosphere.The structure,surface composition,UV-visible spectra of the films were measured by scanning electron microscopy and X-ray diffraction,and X-ray photoelectron spectroscopy,respectively.The experimental results show that the films are amorphous,there are only Ti^4+ and Ce^4+ on the surface of the films,the obtained TiO2-CeO2 films shou a good uniformity and high densification,and the films deposited on the glass can shield ultraviolet light without significant absorpition of visible light,the films deposited on substrates at room temperature and 220℃ absorb UV effectively.
文摘The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal α-AI2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the α-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and 0-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-AI bonds at the Cu/AI2O3 interface independent of the substrate orientation.
文摘Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61076120 and 61106130the Natural Science Foundation and Scientific Support Plan of Jiangsu Province under Grant Nos BK2012516,BK20131072,and BE2012007
文摘CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.
基金the Nationa1 Science Foundation of China for financial support(contract no.50271065)to this project
文摘A new kind of SiOx film on Al substrate,prepared by Ambient Pressure Chemical Vapor Deposition (APCVD) is reported in this paper. It is proposed that the SiOx particles as products of SiH4 and O2 reaction deposited on the heated Al surface, followed by close packing and further growth to form the thin film. The morphology, composition and microstructure of the film are characterized by SEM, XPS, XRD and HRTEM. The results show that the SiO, film comprises a majority of uncrystalline structure with a fraction of dispersed ordered zones and the atomic ratio of Si/O in the film is 1:1.60-1:1.75. The tests show that the film is well-bonded with the substrate.
基金Project(50372017) supported by the National Natural Science Foundation of China Project(E0204) supported by the Major Laboratory of Ferro-Piezoelctric Device of Hubei Province, China
文摘Compositionally graded Ba1-xSrxTiO3 (BST) (x = 0-0.3) thin films were prepared on Pt/Ti/SiO2/Si substrate at different substrate temperatures ranging from 550 ℃ to 650 ℃ by radio-frequency (rf) magnetron sputtering. The effect of substrate temperature on the preferential orientation, microstructures and dielectric properties of compositionally graded BST thin films was investigated by X-ray diffraction, scanning electron microscopy and dielectric frequency spectra, respectively. As the temperature increases, the preferential orientation evolves in the order: randomly orientation→ (111) → highly oriented (111) (α(111) = 60.2%). The surface roughness of the graded BST thin films varies with the substrate temperatures. No visible internal interface in the compositionally graded thin films can be observed in the cross-sectional SEM images. The graded BST thin films deposited at 650 ℃ possess the highest dielectric constant and dielectric loss, which are 408 and 0.013, respectively.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
基金Project supported by the National Natural Science Foundation of China(Nos.11972363 and12272401)the Opening Project of State Key Laboratory of Solid Lubrication(Lanzhou Institute of Chemical Physics)(No.LSL-20012001)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-E-0221G01)。
文摘To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate system is widely designed and applied,whose interfacial behavior dominates the strength and service life of thermoelectric devices.Herein,a theoretical model of a thermoelectric film bonded to a graded substrate is proposed.The interfacial shear stress,the normal stress in the thermoelectric film,and the stress intensity factors affected by various material and geometric parameters are comprehensively studied.It is found that adjusting the inhomogeneity parameter of the graded substrate,thermal conductivity,and current density of the thermoelectric film can reduce the risk of interfacial failure of the thermoelectric film/graded substrate system.Selecting a stiffer and thicker thermoelectric film is advantageous to the reliability of the thermoelectric film/graded substrate system.The results should be of great guiding significance for the present and upcoming applications of thermoelectric materials in various fields.