High-quality ITO films on flexible PET substrate were prepared by RF magnetron sputtering at low deposition temperature with different Ar gas sputtering pressure.Adhesion and electro-optical properties of ITO films we...High-quality ITO films on flexible PET substrate were prepared by RF magnetron sputtering at low deposition temperature with different Ar gas sputtering pressure.Adhesion and electro-optical properties of ITO films were investigated as a function of Ar partial pressure.The sputtering conditions provide very uniform ITO films with high transparency(>85%in 400-760 nm spectra)and low electrical resistivity(1.408×10^(-3)-1.956×10^(-3)Ω·cm).Scratch test experiments indicate that there is a good adhesion property between ITO films and PET substrate,the critical characteristic load increases from 16.5 to 23.2 N with increasing Ar sputtering pressure from 0.2 to 1.4 Pa.展开更多
Cubic boron nitride(c-BN) films were deposited on HSS substrate implanted with nitrogen ion by RF-magnetron sputtering. The films were analyzed by bending beam method, scratch test, XRD and AFM. The results show that ...Cubic boron nitride(c-BN) films were deposited on HSS substrate implanted with nitrogen ion by RF-magnetron sputtering. The films were analyzed by bending beam method, scratch test, XRD and AFM. The results show that the implantation of N ion can reduce the internal stress and improve the adhesion strength of the films.The critical load comes to 16.92N, compared to 1.75N of c-BN film on the unimplanted HSS. AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. The phase structure of the nitrogen implanted layer was analyzed by XRD. The influence of nitrogen implanted layer on the internal stress and adhesion strength of c-BN films were also investigated.展开更多
Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS a...Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the internal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate s...To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate system is widely designed and applied,whose interfacial behavior dominates the strength and service life of thermoelectric devices.Herein,a theoretical model of a thermoelectric film bonded to a graded substrate is proposed.The interfacial shear stress,the normal stress in the thermoelectric film,and the stress intensity factors affected by various material and geometric parameters are comprehensively studied.It is found that adjusting the inhomogeneity parameter of the graded substrate,thermal conductivity,and current density of the thermoelectric film can reduce the risk of interfacial failure of the thermoelectric film/graded substrate system.Selecting a stiffer and thicker thermoelectric film is advantageous to the reliability of the thermoelectric film/graded substrate system.The results should be of great guiding significance for the present and upcoming applications of thermoelectric materials in various fields.展开更多
Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool. The results of increasing the adhesion strength of thin film coatings on cutting tool ins...Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool. The results of increasing the adhesion strength of thin film coatings on cutting tool inserts by pretreating the inserts with sandblasting technique to obtain a desirable surface morphology of the inserts are presented. A geometric model representing the ideal surface morphology is established to enhance the nucleation density and adhesion strength of coating-substrate. Thin film coating experiment is conducted on the substrates of four different sample groups. Indentation and wear tests are performed on coated inserts to evaluate the effect of sandblasting on the adhesion strength of the coatings. A theoretical analysis is provided on the formation and growth of atom clusters in terms of the contact angle and the thermodynamic barrier of a substrate to predict thin film nucleation.展开更多
The cantilever bending test,particularly monitored by an acoustic emission technique, was adopted to measure the tensile and interfacial adhesive strengths of the HCD ion plated fine TiN film on pure Ti substrate.The ...The cantilever bending test,particularly monitored by an acoustic emission technique, was adopted to measure the tensile and interfacial adhesive strengths of the HCD ion plated fine TiN film on pure Ti substrate.The behaviors of film damaging were found to be characterized by:an internal tensile stress which exceeded its tensile strength for TiN facing upward,and a shearing stress along film substrate interface which exceeded its adhesive strength for TiN facing downward.The measured tensile and adhcsive strengths are 603 and 242 MPa respectively.展开更多
ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The p...ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.展开更多
The periodic [Ti/TiB2]n (n=l, 2, 3) multilayered films were prepared on the substrate of AISI 316L stainless steel by magnetron sputtering to enhance the adhesion of TiB2 films based on the remarkable mechanical per...The periodic [Ti/TiB2]n (n=l, 2, 3) multilayered films were prepared on the substrate of AISI 316L stainless steel by magnetron sputtering to enhance the adhesion of TiB2 films based on the remarkable mechanical performance of layered films. The influence of periods on microstructure, adhesion and hardness of [Ti/TiB2]n multilayered films was studied. X-ray diffraction (XRD) analysis shows that the monolayer TiB2 films exhibit (001) preferred orientation, and the preferred orientation of [Ti/TiB2], multilayered films transfers from (001) to (100) with the increase of periods. The cross-sectional morphology of each film displays homogeneity by field emission scanning electron microscopy (FESEM). The hardness of the films measured via nanoindention changes from 20 to 26 GPa with the increase of periods. These values of hardness are a bit lower than that of the monolayer TiB2 films which is up to 33 GPa. However, the [Ti/TiB2]n multilayered films present a considerably good adhesion, which reaches a maximum of 24 N, in comparison with the monolayer TiB2 films according to the experimental results.展开更多
The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentratio...The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films.展开更多
A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri...A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.展开更多
Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles,...Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.展开更多
A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical...A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes.展开更多
AlN films were deposited by reactive radio frequency (RF) sputtering on various bottom electrodes, such as Al, Ti, Mo, Au/Ti, and Pt/Ti. The effects of substrate metals on the orientation of AlN thin films were inve...AlN films were deposited by reactive radio frequency (RF) sputtering on various bottom electrodes, such as Al, Ti, Mo, Au/Ti, and Pt/Ti. The effects of substrate metals on the orientation of AlN thin films were investigated. The results of X-ray diffraction, atomic force microscopy, and field emission scanning electron microscopy show that the orientation of AlN films depends on the kinds of substrate metals evidently. The differences of AlN films deposited on various metal electrodes are attributed to the differences in lattice mismatch and thermal expansion coefficient between the AlN material and substrate metals. The AlN film deposited on the Pt/Ti electrode reveals highly the c-axis orientation with well-textured columnar structure. The positive role of the Pt/Ti electrode in achieving the high-quality AlN films and high-performance film bulk acoustic resonator (FBAR) may be attributed to the smaller lattice mismatch as well as the similarity of thermal expansion coefficient between the deposited AlN material and the Pt/Ti electrode substrate.展开更多
A series of TbDyFe films were prepared by DC magnetron sputtering. The effects of substrate temperature and annealing temperature on the phase structure and the magnetic properties of the sample films were investigate...A series of TbDyFe films were prepared by DC magnetron sputtering. The effects of substrate temperature and annealing temperature on the phase structure and the magnetic properties of the sample films were investigated. The an-nealing treatment has a significant influence on the microstructure and the magnetic properties of the sample. The results obtained by XRD indicate that the films deposited at a temperature lower than 525℃ are amorphous and have an easy magnetization direction perpendicular to the film plane. An RFe2 phase is formed in the sample annealed at 550℃ and the residual phases observed are Fe and rare earth oxide. The magnetic properties Hc and Mr/Ms of the film annealed at 550℃ obtain the maximum values,for which the formation of the RFe2 phase is mainly responsible. An annealing treatment leads to a rotation of the sample’s easy axis from being parallel to the film surface to becoming vertical.展开更多
The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems(MEMS/NEMS)and flexible electronics. This article reviews ongoing...The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems(MEMS/NEMS)and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques,such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.展开更多
Anatase TiO2 sol was synthesized under mild conditions (75℃ and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room te...Anatase TiO2 sol was synthesized under mild conditions (75℃ and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room temperature and in ambient atmosphere, crystalline TiO2 thin films were deposited on polymethylmethacrylate (PMMA), SiO2-coated PMMA and SiO2-coated silicone rubber substrates from the as-prepared TiO2 sol by a dip-coating process. SiO2 layers prior to TiO2 thin films on polymer substrates could not only protect the substrates from the photocatalytic decomposition of the TiO2 thin films but also enhance the adhesion of the TiO2 thin films to the substrates. Field-emission type scanning electron microscope (FE-SEM) investigations revealed that the average particle sizes of the nanoparticles composing the TiO2 thin films were about 35-47 nm. The TiO2 thin films exhibited high photocatalytic activities in the degradation of reactive brilliant red dye X-3B in aqueous solution under aerated conditions. The preparation process of photocatalytic TiO2 thin films on the polymer substrates was quite simple and a low temperature route.展开更多
A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for in...A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.展开更多
Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of d...Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.展开更多
InN films with highly c-axis preferred orientation were deposited on sapphire substrate by low-temperature electron cyclotron resonance plasma-enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). Trimethyl ...InN films with highly c-axis preferred orientation were deposited on sapphire substrate by low-temperature electron cyclotron resonance plasma-enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). Trimethyl indium (TMIn) and N 2 were applied as precursors of In and N, respectively. The quality of as-grown InN films were systematically investigated as a function of TMIn fluxes by means of reflection high-energy electron diffraction (RHEED), X-ray diffraction analysis (XRD), and atomic force microscopy (AFM). The results show that the dense and uniform InN films with highly c-axis preferred orientation are successfully achieved on sapphire substrates under optimized TMIn flux of 0.8 ml min 1 . The InN films reported here will provide various opportunities for the development of high efficiency and high-performance semiconductor devices based on InN material.展开更多
基金This work was financially supported bythe Sichuan Outstanding Youth Foundation of China(No.04ZQ026-008)Thanks are due to the Foundation Franco Chinoise pour la Science et ses Applications(FF-CSA)
文摘High-quality ITO films on flexible PET substrate were prepared by RF magnetron sputtering at low deposition temperature with different Ar gas sputtering pressure.Adhesion and electro-optical properties of ITO films were investigated as a function of Ar partial pressure.The sputtering conditions provide very uniform ITO films with high transparency(>85%in 400-760 nm spectra)and low electrical resistivity(1.408×10^(-3)-1.956×10^(-3)Ω·cm).Scratch test experiments indicate that there is a good adhesion property between ITO films and PET substrate,the critical characteristic load increases from 16.5 to 23.2 N with increasing Ar sputtering pressure from 0.2 to 1.4 Pa.
基金Project (59971065) supported by the National Natural Science Foundation of China
文摘Cubic boron nitride(c-BN) films were deposited on HSS substrate implanted with nitrogen ion by RF-magnetron sputtering. The films were analyzed by bending beam method, scratch test, XRD and AFM. The results show that the implantation of N ion can reduce the internal stress and improve the adhesion strength of the films.The critical load comes to 16.92N, compared to 1.75N of c-BN film on the unimplanted HSS. AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. The phase structure of the nitrogen implanted layer was analyzed by XRD. The influence of nitrogen implanted layer on the internal stress and adhesion strength of c-BN films were also investigated.
基金National Natural Science Foundation ofChina(No.59971065)
文摘Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the internal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
基金Project supported by the National Natural Science Foundation of China(Nos.11972363 and12272401)the Opening Project of State Key Laboratory of Solid Lubrication(Lanzhou Institute of Chemical Physics)(No.LSL-20012001)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-E-0221G01)。
文摘To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate system is widely designed and applied,whose interfacial behavior dominates the strength and service life of thermoelectric devices.Herein,a theoretical model of a thermoelectric film bonded to a graded substrate is proposed.The interfacial shear stress,the normal stress in the thermoelectric film,and the stress intensity factors affected by various material and geometric parameters are comprehensively studied.It is found that adjusting the inhomogeneity parameter of the graded substrate,thermal conductivity,and current density of the thermoelectric film can reduce the risk of interfacial failure of the thermoelectric film/graded substrate system.Selecting a stiffer and thicker thermoelectric film is advantageous to the reliability of the thermoelectric film/graded substrate system.The results should be of great guiding significance for the present and upcoming applications of thermoelectric materials in various fields.
基金This project is Supported by National Science Foundation of China (No.59475090)National Science Foundation of USA (No.DDM-93-9669)
文摘Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool. The results of increasing the adhesion strength of thin film coatings on cutting tool inserts by pretreating the inserts with sandblasting technique to obtain a desirable surface morphology of the inserts are presented. A geometric model representing the ideal surface morphology is established to enhance the nucleation density and adhesion strength of coating-substrate. Thin film coating experiment is conducted on the substrates of four different sample groups. Indentation and wear tests are performed on coated inserts to evaluate the effect of sandblasting on the adhesion strength of the coatings. A theoretical analysis is provided on the formation and growth of atom clusters in terms of the contact angle and the thermodynamic barrier of a substrate to predict thin film nucleation.
文摘The cantilever bending test,particularly monitored by an acoustic emission technique, was adopted to measure the tensile and interfacial adhesive strengths of the HCD ion plated fine TiN film on pure Ti substrate.The behaviors of film damaging were found to be characterized by:an internal tensile stress which exceeded its tensile strength for TiN facing upward,and a shearing stress along film substrate interface which exceeded its adhesive strength for TiN facing downward.The measured tensile and adhcsive strengths are 603 and 242 MPa respectively.
文摘ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.
基金Project(51175212)supported by the National Natural Science Foundation of China
文摘The periodic [Ti/TiB2]n (n=l, 2, 3) multilayered films were prepared on the substrate of AISI 316L stainless steel by magnetron sputtering to enhance the adhesion of TiB2 films based on the remarkable mechanical performance of layered films. The influence of periods on microstructure, adhesion and hardness of [Ti/TiB2]n multilayered films was studied. X-ray diffraction (XRD) analysis shows that the monolayer TiB2 films exhibit (001) preferred orientation, and the preferred orientation of [Ti/TiB2], multilayered films transfers from (001) to (100) with the increase of periods. The cross-sectional morphology of each film displays homogeneity by field emission scanning electron microscopy (FESEM). The hardness of the films measured via nanoindention changes from 20 to 26 GPa with the increase of periods. These values of hardness are a bit lower than that of the monolayer TiB2 films which is up to 33 GPa. However, the [Ti/TiB2]n multilayered films present a considerably good adhesion, which reaches a maximum of 24 N, in comparison with the monolayer TiB2 films according to the experimental results.
基金Project(2012ZX04003-031)supported by the National Science and Technology Major Project,China
文摘The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films.
基金Project(20110933K) supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(2012QNZT002) supported by the Freedom Explore Program of Central South University,ChinaProject(CSUZC2012024) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.
基金Projects(51071070,51271079)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0156)supported by New Century Excellent Talents in University,China
文摘Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation,China+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSUZC2013016)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes.
基金supported by the National Natural Science Foundation of China (No.50872031)the Natural Science Foundation of Hubei Province,China (No.2008CDA018)
文摘AlN films were deposited by reactive radio frequency (RF) sputtering on various bottom electrodes, such as Al, Ti, Mo, Au/Ti, and Pt/Ti. The effects of substrate metals on the orientation of AlN thin films were investigated. The results of X-ray diffraction, atomic force microscopy, and field emission scanning electron microscopy show that the orientation of AlN films depends on the kinds of substrate metals evidently. The differences of AlN films deposited on various metal electrodes are attributed to the differences in lattice mismatch and thermal expansion coefficient between the AlN material and substrate metals. The AlN film deposited on the Pt/Ti electrode reveals highly the c-axis orientation with well-textured columnar structure. The positive role of the Pt/Ti electrode in achieving the high-quality AlN films and high-performance film bulk acoustic resonator (FBAR) may be attributed to the smaller lattice mismatch as well as the similarity of thermal expansion coefficient between the deposited AlN material and the Pt/Ti electrode substrate.
基金the National Natural Science Foundation of China (No. 50271017).
文摘A series of TbDyFe films were prepared by DC magnetron sputtering. The effects of substrate temperature and annealing temperature on the phase structure and the magnetic properties of the sample films were investigated. The an-nealing treatment has a significant influence on the microstructure and the magnetic properties of the sample. The results obtained by XRD indicate that the films deposited at a temperature lower than 525℃ are amorphous and have an easy magnetization direction perpendicular to the film plane. An RFe2 phase is formed in the sample annealed at 550℃ and the residual phases observed are Fe and rare earth oxide. The magnetic properties Hc and Mr/Ms of the film annealed at 550℃ obtain the maximum values,for which the formation of the RFe2 phase is mainly responsible. An annealing treatment leads to a rotation of the sample’s easy axis from being parallel to the film surface to becoming vertical.
基金supported by the National Natural Science Foundation of China (Grants 11472186 and 11602083)the Natural Science Foundation of Hunan Province, China (Grant 2016JJ6044)
文摘The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems(MEMS/NEMS)and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques,such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.
文摘Anatase TiO2 sol was synthesized under mild conditions (75℃ and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room temperature and in ambient atmosphere, crystalline TiO2 thin films were deposited on polymethylmethacrylate (PMMA), SiO2-coated PMMA and SiO2-coated silicone rubber substrates from the as-prepared TiO2 sol by a dip-coating process. SiO2 layers prior to TiO2 thin films on polymer substrates could not only protect the substrates from the photocatalytic decomposition of the TiO2 thin films but also enhance the adhesion of the TiO2 thin films to the substrates. Field-emission type scanning electron microscope (FE-SEM) investigations revealed that the average particle sizes of the nanoparticles composing the TiO2 thin films were about 35-47 nm. The TiO2 thin films exhibited high photocatalytic activities in the degradation of reactive brilliant red dye X-3B in aqueous solution under aerated conditions. The preparation process of photocatalytic TiO2 thin films on the polymer substrates was quite simple and a low temperature route.
基金the Fund of Anhui Province Science Research Projects,China(No.1106b0105062)the Research Foundation Program of Scientific and Technological Innovation Team of College and University at the Provincial Level of Anhui,China(No.TD200710)
文摘A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.
基金Project(51375011)supported by the National Natural Science Foundation of ChinaProject(15cxy49)supported by the Shanghai Municipal Education Commission,ChinaProject(16PJ025)supported by the Shanghai Pujiang Program,China
文摘Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.
基金supported by the National Natural Science Foundation of China (No. 61040058) (No. 60976006)the Fundamental Research Funds for the Central Universities (No.DUT10LK01)the Science and Technology Foundation for Higher Education of Liaoning Province, China and Science and Technology Innovation Project Foundation for Higher Education School (No.707015)
文摘InN films with highly c-axis preferred orientation were deposited on sapphire substrate by low-temperature electron cyclotron resonance plasma-enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). Trimethyl indium (TMIn) and N 2 were applied as precursors of In and N, respectively. The quality of as-grown InN films were systematically investigated as a function of TMIn fluxes by means of reflection high-energy electron diffraction (RHEED), X-ray diffraction analysis (XRD), and atomic force microscopy (AFM). The results show that the dense and uniform InN films with highly c-axis preferred orientation are successfully achieved on sapphire substrates under optimized TMIn flux of 0.8 ml min 1 . The InN films reported here will provide various opportunities for the development of high efficiency and high-performance semiconductor devices based on InN material.