This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low s...Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450 ℃. The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy (SEM). The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction (XRD). The diamond nucleation density significantly decreases with the increasing of the substrate temperature. There are only sparse nuclei when the substrate temperature is higher than 800 ℃ although the ethanol concentration in hydrogen is very high. That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450 ℃ extends into broadband indicates that the film is of nanophase. No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP3 carbon. The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film.展开更多
This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface ...This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.展开更多
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c...Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.展开更多
A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-ter...A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(Ⅱ) as iron source and hydrogen gas or hydrogen plasma as the coreactant.The films deposited with hydrogen gas are demonstrated polycrystalline with body-centered cubic Fe.However,for the films deposited with hydrogen plasma,the amorphous phase of iron carbide is obtained.The influence of the deposition temperature on iron and iron carbide characteristics have been investigated.展开更多
Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is invest...Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.展开更多
Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific pro...Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific properties made diamond film a promising material for cutting tools, microwave windows, heat sinks for electronic devices and diamond electrodes. However, the diamond film with grain sizes at microscale usually exhibits high surface roughness and hinders its applications in the microelectro mechanical system (MEMS) and biological field because it is difficult to be polished by mechanical and chemical methods. With the development of the chemical vapor deposition, the nanocrystalline diamond (NCD) film has been fabricated and found new applications. The grain size of NCD film is in the range of 10 to 100 nm, which inherits the properties of the diamond and possesses the unique properties of the nanoscale materials, and the morphology of the NCD film is granular or needle-like structure. The microwave plasma chemical vapor deposition (MPCVD) has been regarded as the most promising method to deposit NCD film at low temperature. Compared to the hot filament CVD, MPCVD can grow high quality NCD film avoiding of the contamination from the filament materials. The MPCVD technique has high plasma density to activate carbonaceous compound and grow NCD film in high growth rate and low substrate temperature. The unique properties of NCD film, such as the superior electrical, mechanical and biological properties facilitate their application in various fields. The biological application, especially as a biocompatible coating, mainly includes the joint replacement implants and protective coatings and the ophthalmological prosthesis.展开更多
Structural and optical properties of nanometric titanium oxide(TixOy) films obtained by cathodic arc plasma deposition were investigated. Phase analysis by x-ray diffraction and Fouriertransform infrared spectroscop...Structural and optical properties of nanometric titanium oxide(TixOy) films obtained by cathodic arc plasma deposition were investigated. Phase analysis by x-ray diffraction and Fouriertransform infrared spectroscopy showed the presence of anatase, rutile, Ti_2O_3, Ti_4O_7 and amorphous phases. Scanning electron microscopy images showed well-developed surface morphology with nano-patterns. Spectroscopic ellipsometry revealed film thicknesses of 53 and50 nm, variable refractive indices dependent on the light wavelength and close to zero extinction coefficients for wavelengths higher than 500 nm. On the basis of ultraviolet–visible spectroscopy data and using the Tauc equation, band gap values for direct and indirect electron transitions were determined.展开更多
SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR...SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.展开更多
Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in...Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.展开更多
Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in...Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.展开更多
Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoerciviti...Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.展开更多
Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plas...Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plasma has been monitored by Mast spectrometry. It shows that the majority of the plasma species in the downstream ECR Plasma with benzene as gas source are acetylene, ethylene and higher mass species. In the experiments, the effects of the substrate temperature on the deposition rates have been emphatically studied. The structures of the films were analyzed by FTIR and Ramam spectrum.The results show that when the substrate temperature rises, the deposition rate drops down, the hydrogen Foment decreases, with the higher SP3 content being presented in the film.展开更多
A new laser-plasma deposition method has been developed for the plasma chemical deposition of hard silicon carbonitride coatings on stainless steel substrates from the hexamethyldisilazane (HMDS) Si<sub><span...A new laser-plasma deposition method has been developed for the plasma chemical deposition of hard silicon carbonitride coatings on stainless steel substrates from the hexamethyldisilazane (HMDS) Si<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">NH(CH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">6</span></sub><span style="font-family:Verdana;"> vapor in a high-speed Ar and Ar</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">10 vol.% He gas stream at the HMDS gas flow activation after the laser beam focus. The method allows depositing silicon carbonitride coatings at the rate of 0.4</span><span style="font-family:Verdana;"> - </span><span style="font-family:;" "=""><span style="font-family:Verdana;">1.2 μm·min</span><sup><span style="font-size:12px;font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> ~2 times higher than that at introducing HMDS in the laser beam focus zone. The properties of the prepared coatings have been studied by the methods of IR and Raman spectroscopy, atomic force microscopy, nanoindentation and X-ray diffraction (XRD) analysis. Studying the film structure with the use of XRD showed that the prepared silicon carbonitride coatings are X-ray amorphous. It has been found that the coating deposition rate and the structure of coatings depend on the process parameters: HMDS flow rate and plasma-generating gas (argon or (Ar +</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">He). The method allows depositing SiCN films at a high speed and a hardness of 20</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">22 GPa.</span>展开更多
Cubic boron nitride thin films were deposited on silicon substrates by low-pressure inductively coupled plasmaenhanced chemical vapour deposition. It was found that the introduction of 02 into the deposition system su...Cubic boron nitride thin films were deposited on silicon substrates by low-pressure inductively coupled plasmaenhanced chemical vapour deposition. It was found that the introduction of 02 into the deposition system suppresses both nucleation and growth of cubic boron nitride. At a B2H6 concentration of 2.5% during film deposition, the critical O2 concentration allowed for the nucleation of cubic boron nitride was found to be less than 1.4%, while that for the growth of cubic boron nitride was higher than 2.1%. Moreover, the infrared absorption peak observed at around 1230- 1280 cm^-1, frequently detected for cubic boron nitride films prepared using non-ultrahigh vacuum systems, appears to be due to the absorption of boron oxide, a contaminant formed as a result of the oxygen impurity. Therefore, the existence of trace oxygen contamination in boron nitride films can be evaluated qualitatively by this infrared absorption peak.展开更多
Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD)...Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor for the first time. Different surface pretreatment techniques are carried out under different gas conditions (CH4, H2, Ar, and CH4/H2) to eliminate the effect of grain boundaries on the growth of a smooth NCD intrinsic layer. Well doped NCD films have been fabricated in CH4/H2/B2H6 plasma by varying the atomic ratio of B/C and the substrate temperature. Atomic force microscopy (AFM) results show that pretreatment in pure CH4 plasma at 1000℃ is most effective for NCD growth, while hydrogen containing plasma is harmful to the surface smoothness of NCD thin fihns. Doping research indicates that the optimum parameters for the boron-doping of high-quality NCD thin films are B/C=300 ppm (10-6) and 800℃.展开更多
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness...Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.展开更多
Cerium dioxide, CeO2, is a potentially superior material in a myriad of areas, and many methods have been proposed to deposit single crystal CeO2 thin films. A novel fabrication technique utilizing dual plasma generat...Cerium dioxide, CeO2, is a potentially superior material in a myriad of areas, and many methods have been proposed to deposit single crystal CeO2 thin films. A novel fabrication technique utilizing dual plasma generated by metal vacuum arc (MEVVA) and radio frequency (RF) is discussed in this paper. We have recently conducted a systematic investigation to determine the optimal process window to deposit CeO2 thin films'on Si(100) substrates. The X-ray diffraction results show the existence of CeO2(100) in the as-deposited sample.展开更多
Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was ...Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination, or are consumed on the substrate surface where chemical reactions occur.展开更多
Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma...Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma chemical vaporization deposition(MPCVD) with Ar as incorporation gas. The film was characterized by FTIR and ESCA. The role of dissociation of chemical bond in the polymerization process and the influence of substrate temperature and material on deposition were investigated in some detail.展开更多
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
基金The project supported by the ChenGuang project of the Wuhan government (No. 20025001014)
文摘Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450 ℃. The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy (SEM). The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction (XRD). The diamond nucleation density significantly decreases with the increasing of the substrate temperature. There are only sparse nuclei when the substrate temperature is higher than 800 ℃ although the ethanol concentration in hydrogen is very high. That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450 ℃ extends into broadband indicates that the film is of nanophase. No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP3 carbon. The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film.
文摘This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.
基金Projects(51275302,51005154)supported by the National Natural Science Foundation of China
文摘Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.
基金financially supported by National Natural Science Foundation of China(No.11775028)Collaborative Innovation Center of Green Printing&Publishing Technology(No.15208)Beijing Institute of Graphic Communication Project(Nos.Ea201801 04190119001-020 and 12000400001)
文摘A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(Ⅱ) as iron source and hydrogen gas or hydrogen plasma as the coreactant.The films deposited with hydrogen gas are demonstrated polycrystalline with body-centered cubic Fe.However,for the films deposited with hydrogen plasma,the amorphous phase of iron carbide is obtained.The influence of the deposition temperature on iron and iron carbide characteristics have been investigated.
文摘Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.
文摘Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific properties made diamond film a promising material for cutting tools, microwave windows, heat sinks for electronic devices and diamond electrodes. However, the diamond film with grain sizes at microscale usually exhibits high surface roughness and hinders its applications in the microelectro mechanical system (MEMS) and biological field because it is difficult to be polished by mechanical and chemical methods. With the development of the chemical vapor deposition, the nanocrystalline diamond (NCD) film has been fabricated and found new applications. The grain size of NCD film is in the range of 10 to 100 nm, which inherits the properties of the diamond and possesses the unique properties of the nanoscale materials, and the morphology of the NCD film is granular or needle-like structure. The microwave plasma chemical vapor deposition (MPCVD) has been regarded as the most promising method to deposit NCD film at low temperature. Compared to the hot filament CVD, MPCVD can grow high quality NCD film avoiding of the contamination from the filament materials. The MPCVD technique has high plasma density to activate carbonaceous compound and grow NCD film in high growth rate and low substrate temperature. The unique properties of NCD film, such as the superior electrical, mechanical and biological properties facilitate their application in various fields. The biological application, especially as a biocompatible coating, mainly includes the joint replacement implants and protective coatings and the ophthalmological prosthesis.
基金by the Ministry of Education,Science and Technological Development of the Republic of Serbia(grant 172026)COST action MP1306
文摘Structural and optical properties of nanometric titanium oxide(TixOy) films obtained by cathodic arc plasma deposition were investigated. Phase analysis by x-ray diffraction and Fouriertransform infrared spectroscopy showed the presence of anatase, rutile, Ti_2O_3, Ti_4O_7 and amorphous phases. Scanning electron microscopy images showed well-developed surface morphology with nano-patterns. Spectroscopic ellipsometry revealed film thicknesses of 53 and50 nm, variable refractive indices dependent on the light wavelength and close to zero extinction coefficients for wavelengths higher than 500 nm. On the basis of ultraviolet–visible spectroscopy data and using the Tauc equation, band gap values for direct and indirect electron transitions were determined.
文摘SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.
基金supported by the Research Pund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.
文摘Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171001,51371009 and 50971003the Foundation of Key Laboratory of Neutron Physics of CAEP under Grant No 2014BB02
文摘Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.
基金Nature Science Foundation of Jiangsu Province, P.R.China
文摘Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plasma has been monitored by Mast spectrometry. It shows that the majority of the plasma species in the downstream ECR Plasma with benzene as gas source are acetylene, ethylene and higher mass species. In the experiments, the effects of the substrate temperature on the deposition rates have been emphatically studied. The structures of the films were analyzed by FTIR and Ramam spectrum.The results show that when the substrate temperature rises, the deposition rate drops down, the hydrogen Foment decreases, with the higher SP3 content being presented in the film.
文摘A new laser-plasma deposition method has been developed for the plasma chemical deposition of hard silicon carbonitride coatings on stainless steel substrates from the hexamethyldisilazane (HMDS) Si<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">NH(CH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">6</span></sub><span style="font-family:Verdana;"> vapor in a high-speed Ar and Ar</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">10 vol.% He gas stream at the HMDS gas flow activation after the laser beam focus. The method allows depositing silicon carbonitride coatings at the rate of 0.4</span><span style="font-family:Verdana;"> - </span><span style="font-family:;" "=""><span style="font-family:Verdana;">1.2 μm·min</span><sup><span style="font-size:12px;font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> ~2 times higher than that at introducing HMDS in the laser beam focus zone. The properties of the prepared coatings have been studied by the methods of IR and Raman spectroscopy, atomic force microscopy, nanoindentation and X-ray diffraction (XRD) analysis. Studying the film structure with the use of XRD showed that the prepared silicon carbonitride coatings are X-ray amorphous. It has been found that the coating deposition rate and the structure of coatings depend on the process parameters: HMDS flow rate and plasma-generating gas (argon or (Ar +</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">He). The method allows depositing SiCN films at a high speed and a hardness of 20</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">22 GPa.</span>
基金Project supported by the National Natural Science Foundation of China (Grant No. 50772096)the Educational Department of Zhejiang Province, China (Grant No. 20061365)
文摘Cubic boron nitride thin films were deposited on silicon substrates by low-pressure inductively coupled plasmaenhanced chemical vapour deposition. It was found that the introduction of 02 into the deposition system suppresses both nucleation and growth of cubic boron nitride. At a B2H6 concentration of 2.5% during film deposition, the critical O2 concentration allowed for the nucleation of cubic boron nitride was found to be less than 1.4%, while that for the growth of cubic boron nitride was higher than 2.1%. Moreover, the infrared absorption peak observed at around 1230- 1280 cm^-1, frequently detected for cubic boron nitride films prepared using non-ultrahigh vacuum systems, appears to be due to the absorption of boron oxide, a contaminant formed as a result of the oxygen impurity. Therefore, the existence of trace oxygen contamination in boron nitride films can be evaluated qualitatively by this infrared absorption peak.
基金supported by National Natural Science Foundation of China(No.11175137)the Research Fund of Hubei Provincial Department of Education of China(No.Q20081505)the Research Fund of Wuhan Institute of Technology of China(No.11111051)
文摘Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor for the first time. Different surface pretreatment techniques are carried out under different gas conditions (CH4, H2, Ar, and CH4/H2) to eliminate the effect of grain boundaries on the growth of a smooth NCD intrinsic layer. Well doped NCD films have been fabricated in CH4/H2/B2H6 plasma by varying the atomic ratio of B/C and the substrate temperature. Atomic force microscopy (AFM) results show that pretreatment in pure CH4 plasma at 1000℃ is most effective for NCD growth, while hydrogen containing plasma is harmful to the surface smoothness of NCD thin fihns. Doping research indicates that the optimum parameters for the boron-doping of high-quality NCD thin films are B/C=300 ppm (10-6) and 800℃.
基金National Natural Science Foundation of China (Nos.60407013,60876081)the Shanghai-Applied Materials Research and Development Fund of China (No.06SA04)the National High Technology Research and Development Program of China (Nos.2009AA04Z317,2007AA04Z354-03)
文摘Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.
基金The work was supported by Hong Kong RGC CERG9040344 and 9040412, RGC / Germany Joint Schemes9050084 and 9050150, and CityU S
文摘Cerium dioxide, CeO2, is a potentially superior material in a myriad of areas, and many methods have been proposed to deposit single crystal CeO2 thin films. A novel fabrication technique utilizing dual plasma generated by metal vacuum arc (MEVVA) and radio frequency (RF) is discussed in this paper. We have recently conducted a systematic investigation to determine the optimal process window to deposit CeO2 thin films'on Si(100) substrates. The X-ray diffraction results show the existence of CeO2(100) in the as-deposited sample.
基金the National High-Tech Research and Development Program of China (No.2002AA305508)the National Natural Science Foundation of China (No.50472095)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No.2003-14)Beijing Novel Project (No. 2003A13).]
文摘Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination, or are consumed on the substrate surface where chemical reactions occur.
文摘Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma chemical vaporization deposition(MPCVD) with Ar as incorporation gas. The film was characterized by FTIR and ESCA. The role of dissociation of chemical bond in the polymerization process and the influence of substrate temperature and material on deposition were investigated in some detail.