期刊文献+
共找到168,066篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of gallium surfactant on AlN thin films by microwave plasma chemical vapor deposition
1
作者 Lu Wang Xulei Qin +8 位作者 Li Zhang Kun Xu Feng Yang Shaoqian Lu Yifei Li Bosen Liu Guohao Yu Zhongming Zeng Baoshun Zhang 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期53-60,共8页
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro... In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec. 展开更多
关键词 AlN thin film MPCVD gallium surfactant nucleation layer LASER
下载PDF
Surface Deposition of Ni(OH)_(2) and Lattice Distortion Induce the Electrochromic Performance Decay of NiO Films in Alkaline Electrolyte
2
作者 Kejun Xu Liuying Wang +5 位作者 Chaoqun Ge Long Wang Bin Wang Zhuo Wang Chuanwei Zhang Gu Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline... NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood,making it challenging to improve NiO thin films.We studied the phases and electrochemical characteristics of NiO films in different states(initial,colored,bleached and after 8000 cycles)and identified three main reasons for performance degradation.First,Ni(OH)_(2)is generated during electrochromic cycling and deposited on the NiO film surface,gradually yielding a NiO@Ni(OH)_(2)core-shell structure,isolating the internal NiO film from the electrolyte,and preventing ion transfer.Second,the core-shell structure causes the mode of electrical conduction to change from first-to second-order conduction,reducing the efficiency of ion transfer to the surface Ni(OH)_(2)layer.Third,Ni(OH)_(2)and NiOOH,which have similar crystal structures but different b-axis lattice parameters,are formed during electrochromic cycling,and large volume changes in the unit cell reduce the structural stability of the thin film.Finally,we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films,which will promote the development of electrochromic technology. 展开更多
关键词 alkaline electrolyte ELECTROCHROMISM NiO film performance attenuation mechanism
下载PDF
Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation 被引量:2
3
作者 Jiaxin Wu Chenxiao Wang +6 位作者 Xianliang Meng Haichen Liu Ruizhi Chu Guoguang Wu Weisong Li Xiaofeng Jiang Deguang Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期314-324,共11页
In order to further improve the catalytic performance of zeolite catalyst for methanol to aromatics(MTA)technology, the double-tier SAPO-34/ZSM-5/quartz composite zeolite films were successfully synthesized via hydrot... In order to further improve the catalytic performance of zeolite catalyst for methanol to aromatics(MTA)technology, the double-tier SAPO-34/ZSM-5/quartz composite zeolite films were successfully synthesized via hydrothermal crystallization. The Si/Al ratio of SAPO-34 film was used as the only variable to study this material. The composite zeolite material with 0.6Si/Al ratio of SAPO-34 has the largest mesoporous specific surface area and the most suitable acid distribution. The catalytic performance for the MTA process showed that 0.6-SAPO-34/ZSM-5/quartz film has as high as 50.3% benzene-toluenexylene selectivity and 670 min lifetime. The MTA reaction is carried out through the path we designed to effectively avoid the hydrocarbon pool circulation of ZSM-5 zeolite, so as to improve the aromatics selectivity and inhibit the occurrence of deep side reactions to a great extent. The coke deposition behavior was monitored by thermogravimetric analysis and gas chromatograph/mass spectrometer, it is found that with the increase of Si/Al ratio, the active intermediates changed from low-substituted methylbenzene to high-substituted methylbenzene, which led to the rapid deactivation of the catalyst. This work provides a possibility to employ the synergy effect of composite zeolite film synthesizing anti-carbon deposition catalyst in MTA reaction. 展开更多
关键词 Composite zeolite film Methanol to aromatics Anti-carbon deposition Si/Al ratio Hydrocarbon pool circulation mechanism
下载PDF
Atomic layer deposition of thin films:from a chemistry perspective 被引量:3
4
作者 Jinxiong Li Gaoda Chai Xinwei Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期88-116,共29页
Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to d... Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to deposit highly uniform conformal pinhole-free thin films with angstrom-level thickness control,particularly on 3D topologies.Over the years,the ALD technology has enabled not only the successful downscaling of the microelectronic devices but also numerous novel 3D device structures.As ALD is essentially a variant of chemical vapor deposition,a comprehensive understanding of the involved chemistry is of crucial importance to further develop and utilize this technology.To this end,we,in this review,focus on the surface chemistry and precursor chemistry aspects of ALD.We first review the surface chemistry of the gas–solid ALD reactions and elaborately discuss the associated mechanisms for the film growth;then,we review the ALD precursor chemistry by comparatively discussing the precursors that have been commonly used in the ALD processes;and finally,we selectively present a few newly-emerged applications of ALD in microelectronics,followed by our perspective on the future of the ALD technology. 展开更多
关键词 atomic layer deposition surface reaction PRECURSOR chemical mechanism
下载PDF
Thickness effect on solar-blind photoelectric properties of ultrathinβ-Ga_(2)O_(3)films prepared by atomic layer deposition 被引量:1
5
作者 王少青 程妮妮 +6 位作者 王海安 贾一凡 陆芹 宁静 郝跃 刘祥泰 陈海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期707-713,共7页
Theβ-Ga_(2)O_(3)films with different thicknesses are prepared by an atomic layer deposition system.The influence of film thickness on the crystal quality is obvious,indicating that the thicker films perform better cr... Theβ-Ga_(2)O_(3)films with different thicknesses are prepared by an atomic layer deposition system.The influence of film thickness on the crystal quality is obvious,indicating that the thicker films perform better crystal quality,which is verified from x-ray diffraction(XRD)and scanning electron microscope(SEM)results.The Ga_(2)O_(3)-based solar blind photodetectors with different thicknesses are fabricated and studied.The experimental results show that the responsivity of the photodetectors increases exponentially with the increase of the film thickness.The photodetectors with inter-fingered structure based on 900 growth cyclesβ-Ga_(2)O_(3)active layers(corresponding film thickness of 58 nm)exhibit the best performances including a low dark current of 134 fA,photo-to-dark current ratio of 1.5×10^(7),photoresponsivity of 1.56 A/W,detectivity of 2.77×10^(14)Jones,and external quantum efficiency of 764.49%at a bias voltage of 10 V under 254-nm DUV illumination.The photoresponse rejection ratio(R_(254)/R_(365))is up to 1.86×10^(5).In addition,we find that the photoelectric characteristics also depend on the finger spacing of the MSM structure.As the finger spacing decreases from 50μm to10μW,the photoresponsivity,detectivity,and external quantum efficiency increase significantly. 展开更多
关键词 β-Ga_(2)O_(3) film thickness solar blind photodetectors photoelectric response
下载PDF
Optimization of large-area YBa_(2)Cu_(3)O_(7-δ)thin films by pulsed laser deposition for planar microwave devices
6
作者 熊沛雨 陈赋聪 +8 位作者 冯中沛 杨景婷 夏钰东 袁跃峰 王旭 袁洁 吴云 石兢 金魁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期186-190,共5页
This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been ... This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices. 展开更多
关键词 YBCO films pulsed laser deposition(PLD) surface resistance microwave devices
下载PDF
Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting
7
作者 Wanlin Wang Cheng Lu +5 位作者 Liang Hao Jie Zeng Lejun Zhou Xinyuan Liu Xia Li Chenyang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1016-1025,共10页
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ... The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment. 展开更多
关键词 strip casting interfacial heat transfer interfacial wettability naturally deposited film phosphorus content
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:1
8
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
9
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
A progress review of black carbon deposition on Arctic snow and ice and its impact on climate change 被引量:1
10
作者 ZHANG Zilu ZHOU Libo ZHANG Meigen 《Advances in Polar Science》 CSCD 2024年第2期178-191,共14页
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant... The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice. 展开更多
关键词 Arctic climate black carbon ALBEDO SNOW deposition
下载PDF
Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries 被引量:1
11
作者 Qingwen Li Yulu Liu +7 位作者 Ziheng Zhang Jinjie Chen Zelong Yang Qibo Deng Alexander V.Mumyatov Pavel A.Troshin Guang He Ning Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期64-71,共8页
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ... It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries. 展开更多
关键词 diffusion coefficient dynamic alloy interfaces Li dendrites Li solid solution uniform Li deposition
下载PDF
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature,High-Efficiency Carbon-Electrode CsPbBr_(3) Solar Cells 被引量:1
12
作者 Zeyang Zhang Weidong Zhu +10 位作者 Tianjiao Han Tianran Wang Wenming Chai Jiaduo Zhu He Xi Dazheng Chen Gang Lu Peng Dong Jincheng Zhang Chunfu Zhang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期168-175,共8页
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en... Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved. 展开更多
关键词 carbon-electrode perovskite solar cells crystal orientation engineering CsPbBr_(3) low temperature two-step sequential deposition
下载PDF
Controllable growth of wafer-scale PdS and PdS_(2) nanofilms via chemical vapor deposition combined with an electron beam evaporation technique
13
作者 Hui Gao Hongyi Zhou +6 位作者 Yulong Hao Guoliang Zhou Huan Zhou Fenglin Gao Jinbiao Xiao Pinghua Tang Guolin Hao 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期64-71,共8页
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd... Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices. 展开更多
关键词 PDS PdS_(2) NANOfilms controllable growth chemical vapor deposition electron beam evaporation
下载PDF
Edge effect during microwave plasma chemical vapor deposition diamond-film:Multiphysics simulation and experimental verification
14
作者 Zhiliang Yang Kang An +7 位作者 Yuchen Liu Zhijian Guo Siwu Shao Jinlong Liu Junjun Wei Liangxian Chen Lishu Wu Chengming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2287-2299,共13页
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t... This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress. 展开更多
关键词 microwave plasma chemical vapor deposition edge discharge plasma diamond film
下载PDF
Aerosol deposition technology and its applications in batteries
15
作者 Xinyu Wang Ramon Alberto Paredes Camacho +6 位作者 Xiaoyu Xu Yumei Wang Yi Qiang Hans Kungl Ruediger-AEichel Yunfeng Zhang Li Lu 《Nano Materials Science》 EI CAS CSCD 2024年第1期24-37,共14页
Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto tempe... Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto temperaturesensitive substrates,including metals,glasses,and polymers.It should be emphasized that the AD is a spray coating technology that uses powder without thermal assistance to generate films with high density.Compared to the traditional sputter-based approach,the AD shows several advantages in efficiency,convenience,better interfacial bonding and so on.Therefore,it opens some possibilities to the field of batteries,especially all-solidstate batteries(ASSBs)and draws much attention not only for research but also for large scale applications.The purpose of this work is to provide a critical review on the science and technology of AD as well as its applications in the field of batteries.The process,mechanism and effective parameters of AD,and recent developments in AD applications in the field of batteries will be systematically reviewed so that a trend for AD will be finally provided. 展开更多
关键词 Aerosol deposition Room temperature impact consolidation Ceramic film All-solid-state battery Spray coating technology
下载PDF
Centimeter-Scale Above-Room-Temperature Ferromagnetic Fe_(3)GaTe_(2)Thin Films by Molecular Beam Epitaxy
16
作者 Taikun Wang Yongkang Xu +12 位作者 Yu Liu Xingze Dai Pengfei Yan Jin Wang Shuanghai Wang Yafeng Deng Kun He Caitao Li Ziang Wang Wenqin Zou Rongji Wen Yufeng Hao Liang He 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期119-122,共4页
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size... Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2). 展开更多
关键词 EPITAXY film magnetic
下载PDF
Ultrathin Limit on the Anisotropic Superconductivity of Single-Layered Cuprate Films
17
作者 冉峰 陈潘 +5 位作者 李丁艺 熊沛雨 樊子鑫 凌浩铭 梁艳 张坚地 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第2期94-101,共8页
Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La... Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality. 展开更多
关键词 dimensionality FILM evolve
下载PDF
Effect of drying methods on perovskite films and solar cells
18
作者 Ling Liu Chuantian Zuo +3 位作者 Guang-Xing Liang Hua Dong Jingjing Chang Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期1-5,共5页
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af... The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating. 展开更多
关键词 PEROVSKITE films CRITICAL
下载PDF
Chemical vapor deposition for perovskite solar cells and modules
19
作者 Zhihao Tao Yuxuan Song +2 位作者 Baochang Wang Guoqing Tong Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期1-4,共4页
Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The ... Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The PCE for perovskite solar cells(PSCs)reaches 26.14%for single-junction cells,29.1%for perovskite/perovskite tandem cells and 33.9%for perovskite/silicon tandem cells,being comparable to that for silicon and other thin-film solar cells[8-10].Perovskite solar cells have been made by solution methods including spin-coat-ing,blade coating and printing[11,12]. 展开更多
关键词 PEROVSKITE BLADE FILM
下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
20
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部