In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards...In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.展开更多
A spatial mask filter algorithm (SMF) for partial discharge (PD) pulse extraction is proposed in this paper. In this algorithm, firstly, a 'Teager' operator is used to strengthen wavelet coefficient local energy...A spatial mask filter algorithm (SMF) for partial discharge (PD) pulse extraction is proposed in this paper. In this algorithm, firstly, a 'Teager' operator is used to strengthen wavelet coefficient local energy; then direct multiplication of coefficients at two adjacent scales is used to detect singularity points of the signal and to obtain scale based spatial mask filter; finally, an ' AND' logic operator is used in different filters to obtain the last spatial mask filter. By multiplication of wavelet coefficients with the final mask filter and wavelet reconstruction process, partial discharge pulses are extracted. The results of digital simulation and practical experiment show that this method is superior to traditional wavelet shrinkage method (TWS). This algorithm not only can increase the signal to noise ratio (SNR), but also can preserve the encrgy and pulse amplitude.展开更多
基金supported in part by the National Basic Research Program of China(973 Program)under Grant 2013CB336600the Beijing Natural Science Foundation under Grant 4131003+1 种基金the National Natural Science Foundation of China under Grant{61201187,61422109}the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110
文摘In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.
文摘A spatial mask filter algorithm (SMF) for partial discharge (PD) pulse extraction is proposed in this paper. In this algorithm, firstly, a 'Teager' operator is used to strengthen wavelet coefficient local energy; then direct multiplication of coefficients at two adjacent scales is used to detect singularity points of the signal and to obtain scale based spatial mask filter; finally, an ' AND' logic operator is used in different filters to obtain the last spatial mask filter. By multiplication of wavelet coefficients with the final mask filter and wavelet reconstruction process, partial discharge pulses are extracted. The results of digital simulation and practical experiment show that this method is superior to traditional wavelet shrinkage method (TWS). This algorithm not only can increase the signal to noise ratio (SNR), but also can preserve the encrgy and pulse amplitude.