期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm
1
作者 De-xuan ZOU Li-qun GAO Steven LI 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第8期687-696,共10页
This paper presents a ranked differential evolution(RDE) algorithm for solving the identification problem of nonlinear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, ge... This paper presents a ranked differential evolution(RDE) algorithm for solving the identification problem of nonlinear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases. 展开更多
关键词 Ranked differential evolution Identification problem Nonlinear discrete-time systems Volterra filter model Premature convergence
原文传递
Multiple Kalman filters model with shaping filter GPS real-time deformation analysis 被引量:6
2
作者 李丽华 彭军还 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3674-3681,共8页
In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GP... In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GPS real-time deformation series with a high sampling rate contain coloured noise, the multiple Kalman filter model requires the white noise, and the multiple Kalman filters model is augmented by a shaping filter in order to reduce the colored noise; secondly, the multiple Kalman filters model with shaping filter can detect the deformation epoch in real-time and improve the quality of GPS measurements for the real-time deformation applications. Based on the comparisons of the applications in different GPS time series with different models, the advantages of the proposed model were illustrated. The proposed model can reduce the colored noise, detect the smaller changes, and improve the precision of the detected deformation epoch. 展开更多
关键词 multiple Kalman filters model Kalman filter shaping filter deformation detection
下载PDF
Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation 被引量:26
3
作者 Fuqing ZHANG Meng ZHANG James A. HANSEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期1-8,共8页
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim... This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations. 展开更多
关键词 data assimilation four-dimensional variational data assimilation ensemble Kalman filter Lorenz model hybrid method
下载PDF
Multiple Model Filtering in the Presence of Gaussian Mixture Measurement Noises 被引量:1
4
作者 张永安 周荻 段广仁 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第4期229-234,共6页
A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance ... A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance as the interacting multiple model filter at the price ofless computational cost. Numerically robust implementation of the filter is presented to meetpractical applications. An example on bearings-only guidance demonstrates the effect of the proposedalgorithm. 展开更多
关键词 state estimation multiple model filter interacting multiple model Gaussianmixture target tracking bearings-only guidance
下载PDF
A novel maneuvering multi-target tracking algorithm based on multiple model particle filter in clutters 被引量:2
5
作者 胡振涛 Pan Quan Yang Feng 《High Technology Letters》 EI CAS 2011年第1期19-24,共6页
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi... To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method. 展开更多
关键词 maneuvering multi-target tracking multiple model particle filter interacting multiple model IMM) joint probabilistic data association
下载PDF
An optimal filter based MPC for systems with arbitrary disturbances 被引量:1
6
作者 Haokun Wang Zuhua Xu +1 位作者 Jun Zhao Aipeng Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期632-640,共9页
In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the fram... In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics. 展开更多
关键词 Model predictive control Optimal filter Disturbance modeling Disturbance statistics Unmeasured disturbances
下载PDF
Recommendation algorithm of cloud computing system based on random walk algorithm and collaborative filtering model 被引量:1
7
作者 Feng Zhang Hua Ma +1 位作者 Lei Peng Lanhua Zhang 《International Journal of Technology Management》 2017年第3期79-81,共3页
The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is... The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is proposed. The large data set and recommendation computation are decomposed into parallel processing on multiple computers. A parallel recommendation engine based on Hadoop open source framework is established, and the effectiveness of the system is validated by learning recommendation on an English training platform. The experimental results show that the scalability of the recommender system can be greatly improved by using cloud computing technology to handle massive data in the cluster. On the basis of the comparison of traditional recommendation algorithms, combined with the advantages of cloud computing, a personalized recommendation system based on cloud computing is proposed. 展开更多
关键词 Random walk algorithm collaborative filtering model cloud computing system recommendation algorithm
下载PDF
An evolutionary particle filter based EM algorithm and its application 被引量:2
8
作者 向礼 刘雨 苏宝库 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期70-74,共5页
In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaus... In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. This step replaces the resampling stage needed by most particle filters and relieves the effect caused by sample impoverishment. A nonlinear tracking problem shows that this new approach outperforms other related particle filters. 展开更多
关键词 particle filter expectation-maximization (EM) Gaussian mixture model (GMM) nonlinear systems
下载PDF
Estimation of catalytic activity using an unscented Kalman filtering in condensation reaction
9
作者 仓文涛 杨慧中 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1965-1969,共5页
The catalytic activity of cation exchange resins will be continuously reduced with its use time in a condensation reaction for bisphenol A(BPA).For online estimation of the catalytic activity,a catalytic deactivation ... The catalytic activity of cation exchange resins will be continuously reduced with its use time in a condensation reaction for bisphenol A(BPA).For online estimation of the catalytic activity,a catalytic deactivation model is studied for a production plant of BPA,state equation and observation equation are proposed based on the axial temperature distribution of the reactor and the acetone concentration at reactor entrance.A hybrid model of state equation is constructed for improving estimation precision.The unknown parameters in observation equation are calculated with sample data.The unscented Kalman filtering algorithm is then used for on-line estimation of the catalytic activity.The simulation results show that this hybrid model has higher estimation accuracy than the mechanism model and the model is effective for production process of BPA. 展开更多
关键词 Unscented Kalman filtering Catalyst deactivation Soft sensor Hybrid modeling
下载PDF
Collecting aerosol in airflow with a magnetically stabilized fluidized bed 被引量:3
10
作者 Gui, KT Zhang, H +1 位作者 Shi, MH Xu, YQ 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第4期497-501,共5页
A magnetically stabilized fluidized bed (MSB) is a highly efficient filter that takes the advantage of both fluidized beds and fixed beds. This paper presents the research to collect aerosol in airflow with a MSB. The... A magnetically stabilized fluidized bed (MSB) is a highly efficient filter that takes the advantage of both fluidized beds and fixed beds. This paper presents the research to collect aerosol in airflow with a MSB. The filtering model of MSB is established with its parameters including magnetic Geld intensity, gas superficial velocity, average grain-size, and bed height on the collection efficiency of MSB. The model is verified by experiments. 展开更多
关键词 magnetically stabilized fluidized bed filtering model collection efficiency
下载PDF
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
11
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm filter and Wrapper model K-nearest neighbor method Adaptive neighborhood hybrid mutation
下载PDF
Maneuvering target state estimation based on separate model-ing of target trajectory shape and dynamic characteristics 被引量:2
12
作者 ZHANG Zhuanhua ZHOU Gongjian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1195-1209,共15页
The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta... The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers. 展开更多
关键词 maneuvering target tracking separate modeling natural parametric function interacting multiple model(IMM)filter data fitting state augmentation
下载PDF
Improved IMM algorithm based on support vector regression for UAV tracking 被引量:2
13
作者 ZENG Yuan LU Wenbin +3 位作者 YU Bo TAO Shifei ZHOU Haosu CHEN Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期867-876,共10页
With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirement... With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable. 展开更多
关键词 interacting multiple model(IMM)filter constant acceleration(CA) unmanned aerial vehicle(UAV) support vector regression(SVR)
下载PDF
Modified switched IMM estimator based on autoregressive extended Viterbi method for maneuvering target tracking 被引量:3
14
作者 HADAEGH Mahmoudreza KHALOOZADEH Hamid 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1142-1157,共16页
In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac... In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers. 展开更多
关键词 interacting multiple model(IMM) filter constant acceleration(CA) autoregressive(AR) extended Viterbi(EV) autoregressive extended Viterbi(AREV) extended Kalman filter(EKF)
下载PDF
Interpretable machine learning analysis and automated modeling to simulate fluid-particle flows 被引量:1
15
作者 Bo Ouyang Litao Zhu Zhenghong Luo 《Particuology》 SCIE EI CAS CSCD 2023年第9期42-52,共11页
The present study extracts human-understandable insights from machine learning(ML)-based mesoscale closure in fluid-particle flows via several novel data-driven analysis approaches,i.e.,maximal information coefficient... The present study extracts human-understandable insights from machine learning(ML)-based mesoscale closure in fluid-particle flows via several novel data-driven analysis approaches,i.e.,maximal information coefficient(MIC),interpretable ML,and automated ML.It is previously shown that the solidvolume fraction has the greatest effect on the drag force.The present study aims to quantitativelyinvestigate the influence of flow properties on mesoscale drag correction(H_(d)).The MIC results showstrong correlations between the features(i.e.,slip velocity(u^(*)_(sy))and particle volume fraction(εs))and thelabel H_(d).The interpretable ML analysis confirms this conclusion,and quantifies the contribution of u^(*)_(sy),εs and gas pressure gradient to the model as 71.9%,27.2%and 0.9%,respectively.Automated ML without theneed to select the model structure and hyperparameters is used for modeling,improving the predictionaccuracy over our previous model(Zhu et al.,2020;Ouyang,Zhu,Su,&Luo,2021). 展开更多
关键词 filtered two-fluid model Fluid-particle flow Mesoscale closure Interpretable machine learning Automated machine learning Maximal information coefficient
原文传递
ADAPTIVE UPDATE RATE FOR PHASED ARRAY RADAR BASED ON IMMK-PF
16
作者 Zhang Jindong Wang Haiqing Zhu Xiaohua 《Journal of Electronics(China)》 2010年第3期371-376,共6页
Interacting Multiple Model Kalman-Particle Filter (IMMK-PF) has the advantages of particle filter and Kalman filter and good computation efficiency compared with Interacting Multiple Model Particle Filter (IMMPF). Bas... Interacting Multiple Model Kalman-Particle Filter (IMMK-PF) has the advantages of particle filter and Kalman filter and good computation efficiency compared with Interacting Multiple Model Particle Filter (IMMPF). Based on IMMK-PF, an adaptive sampling target tracking algorithm for Phased Array Radar (PAR) is proposed. This algorithm first predicts Posterior Cramer-Rao Bound Matrix (PCRBM) of the target state, then updates the sample interval in accordance with change of the target dynamics by comparing the trace of the predicted PCRBM with a certain threshold. Simulation results demonstrate that this algorithm could solve the nonlinear motion and the nonlinear relationship between radar measurement and target motion state and decrease computation load. 展开更多
关键词 Phased Array Radar (PAR) Interacting Multiple Model Kalman-Particle filter (IMMK-PF) Posterior Cramer-Rao Bound Matrix (PCRBM) Adaptive sampling
下载PDF
Improved filtered mesoscale interphase heat transfer model 被引量:1
17
作者 Yu Li Yaxiong Yu +2 位作者 Chi Zhang Zheqing Huang Qiang Zhou 《Particuology》 SCIE EI CAS CSCD 2021年第4期176-186,共11页
Mesoscale structures that form in gas-solid flows considerably affect interphase heat transfer.A filtered interphase heat transfer model accounts for the effects of unresolved mesoscale structures is required in coars... Mesoscale structures that form in gas-solid flows considerably affect interphase heat transfer.A filtered interphase heat transfer model accounts for the effects of unresolved mesoscale structures is required in coarse-grid simulations.In the literature,researchers obtain the filtered interphase heat transfer coefficient using a correction(Q)to the microscopic interphase heat transfer coefficient.Available models are based on filtered data in the range 0<Q<1.However,the percentage of filtered data in the range Q<0 and Q>1 is non-negligible.This percentage can reach approximately 20%when the dimensionless filter size is smaller than 1.028(66.7×the particle diameter).We proposed an improved filtered interphase heat transfer model by considering the data in the range Q<0 and Q>1.We evaluated the predictive power of our model in an a priori test.Our model has much better performance than other models when the dimensionless filter size△<8.222. 展开更多
关键词 Gas-solid flows Two-fluid model Interphase heat transfer filtered model MESOSCALE
原文传递
Simulations of vertical jet penetration using a filtered two-fluid model in a gas-solid fluidized bed 被引量:2
18
作者 Shuyan Wang Baoli Shao +5 位作者 Xiangyu Li Jian Zhao Lili Liu Yikun Liu gang Liu Qun Dong 《Particuology》 SCIE EI CAS CSCD 2017年第2期95-104,共10页
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ... The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved. 展开更多
关键词 Fluidized bed Vertical jet penetration filtered model Computational fluid dynamics Numerical simulation
原文传递
Adaptive Dual Wavelet Threshold Denoising Function Combined with Allan Variance for Tuning FOG-SINS Filter 被引量:1
19
作者 BESSAAD Nassim BAO Qilian +3 位作者 SUN Shuodong DU Yuding LIU Lin HASSAN Mahmood Ul 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第4期434-440,共7页
Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft ... Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft threshold that presents some mathematical problems.An adaptive dual threshold for discrete wavelet transform(DWT)denoising function overcomes the disadvantages of traditional approaches.Assume that two thresholds for noise and signal and special fuzzy evaluation function for the signal with range between the two thresholds assure continuity and overcome previous difficulties.On the basis of AV,an application for strap-down inertial navigation system(SINS)stochastic model extraction assures more efficient tuning of the augmented 21-state improved exact modeling Kalman filter(IEMKF)states.The experimental results show that the proposed algorithm is superior in denoising performance.Furthermore,the improved filter estimation of navigation solution is better than that of conventional Kalman filter(CKF). 展开更多
关键词 Allan variance(AV) discrete wavelet transform(DWT) adaptive dual threshold fiber optic gyroscope(FOG) strap-down inertial navigation system(SINS) exact modeling filter
原文传递
An Improved H_∞ Filter Design for Nonlinear Systems Described by T-S Fuzzy Models with Time-varying Delay 被引量:1
20
作者 Tuo Zhou Xi-Qin He 《International Journal of Automation and computing》 EI CSCD 2015年第6期671-678,共8页
This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a... This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a matrix decoupling approach and adopting an improved integral inequality method without ignoring any integral term, less conservative results are achieved. Next,based on the model, new delay-dependent sufficient conditions are derived, which are less conservative than the existing ones via solving the linear matrix inequalities(LMIs). Lastly, simulations show a significant improvement over the previous results. 展开更多
关键词 Takagi-Sugeno(T-S) fuzzy model H∞filter nonlinear
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部