期刊文献+
共找到36,084篇文章
< 1 2 250 >
每页显示 20 50 100
Parallel Light Fields: A Perspective and A Framework 被引量:1
1
作者 Fei-Yue Wang Yu Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期542-544,共3页
Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simpl... Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simplified expression of light fields with depth information discarded. In theory, computer vision tasks may achieve better performance as long as complete light fields are acquired. 展开更多
关键词 COMPUTER framework simplified
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:1
2
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:1
3
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework
4
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Systematic Security Guideline Framework through Intelligently Automated Vulnerability Analysis
5
作者 Dahyeon Kim Namgi Kim Junho Ahn 《Computers, Materials & Continua》 SCIE EI 2024年第3期3867-3889,共23页
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof... This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules. 展开更多
关键词 framework AUTOMATION vulnerability analysis SECURITY GUIDELINES
下载PDF
Metal–Organic Framework‑Based Photodetectors
6
作者 Jin‑Biao Zhang Yi‑Bo Tian +1 位作者 Zhi‑Gang Gu Jian Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期675-703,共29页
The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we sum... The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we summarized and discussed the research progress on MOF-based photodetectors.The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details.Additionally,the photodetectors applications for X-ray,ultraviolet and infrared light,biological detectors,and circularly polarized light photodetectors are discussed.Furthermore,summaries and challenges are provided for this important research field. 展开更多
关键词 Metal-organic frameworks SEMICONDUCTOR PHOTODETECTORS
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
7
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 Metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks
8
作者 Yue Cao Ru Wu +2 位作者 Yan‑Yan Gao Yang Zhou Jun‑Jie Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期395-422,共28页
Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic... Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry. 展开更多
关键词 Covalent organic frameworks ELECTROCHEMISTRY ELECTROCHEMILUMINESCENCE SENSORS
下载PDF
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion
9
作者 Tian Mai Lei Chen +2 位作者 Pei‑Lin Wang Qi Liu Ming‑Guo Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期161-179,共19页
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin... With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments. 展开更多
关键词 Metal-organic frameworks MXene NANOCELLULOSE Electromagnetic shielding Photothermal conversion
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
10
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Earth vitality:An integrated framework for tracking Earth sustainability
11
作者 Chuanglin Fang Zhitao Liu 《Geography and Sustainability》 CSCD 2024年第1期96-107,共12页
The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly... The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly affect the Earth's evolutionary trajectory.Despite notable strides in sustainable development practices worldwide,it remains unclear to what extent we have achieved Earth sustainability.Consequently,there is a pressing need to enhance conceptual and methodological frameworks to measure sustainability progress accurately.To address this need,we developed an Earth Vitality Framework that aids in tracking the Earth sustainability progress by considering interactions between spheres,recognizing the equal relationship between humans and nature,and presenting a threshold scheme for all measures.We applied this framework at global and national scales to demonstrate its usefulness.Our findings reveal that the current Earth Vitality Index is 63.74,indicating that the Earth is in a"weak"vitality.Irrational social institutions,unsatisfactory life experiences and the poor state of the biosphere and hydrosphere have remarkably affected the Earth vitality.Additionally,inequality exists between high-income and low-income countries.Although most of the former exhibit poor human-nature interaction,all of them enjoy good human well-being,while the opposite is true for the latter.Finally,we summarize the challenges and possible options for enhancing the Earth vitality in terms of coping with spillover effects,tipping cascades,feedback,and heterogeneity. 展开更多
关键词 Multi-sphere Human-nature interaction SUSTAINABILITY Earth vitality framework
下载PDF
Porous framework materials for energy&environment relevant applications:A systematic review
12
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 Porous framework materials CATALYSIS SEPARATION Gas storage Carbon neutrality
下载PDF
Temperature-feedback two-photon-responsive metal-organic frameworks for efficient photothermal therapy
13
作者 Xianshun Sun Xin Lu +4 位作者 Wenyao Duan Bo Li Yupeng Tian Dandan Li Hongping Zhou 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期53-59,I0011,共8页
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi... The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT. 展开更多
关键词 metal-organic framework TWO-PHOTON temperature feedback photothermal therapy chemodynamic therapy
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
14
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Photophysics of metal-organic frameworks:A brief overview
15
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(MOF) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
下载PDF
Three-dimensional porous bimetallic metal–organic framework/gelatin aerogels: A readily recyclable peroxymonosulfate activator for efficient and continuous organic dye removal
16
作者 Wenlong Xiang Xian Zhang +1 位作者 Rou Xiao Yanhui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期193-202,共10页
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin... As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management. 展开更多
关键词 Catalyst Environment Wastewater Metal–organic framework Gelatin aerogel PEROXYMONOSULFATE
下载PDF
Research evolution of metal organic frameworks: A scientometric approach with human-in-the-loop
17
作者 Xintong Zhao Kyle Langlois +5 位作者 Jacob Furst Yuan An Xiaohua Hu Diego Gomez Gualdron Fernando Uribe-Romo Jane Greenberg 《Journal of Data and Information Science》 CSCD 2024年第3期44-64,共21页
Purpose:This paper reports on a scientometric analysis bolstered by human-in-the-loop,domain experts,to examine the field of metal-organic frameworks(MOFs)research.Scientometric analyses reveal the intellectual landsc... Purpose:This paper reports on a scientometric analysis bolstered by human-in-the-loop,domain experts,to examine the field of metal-organic frameworks(MOFs)research.Scientometric analyses reveal the intellectual landscape of a field.The study engaged MOF scientists in the design and review of our research workflow.MOF materials are an essential component in next-generation renewable energy storage and biomedical technologies.The research approach demonstrates how engaging experts,via human-in-the-loop processes,can help develop a comprehensive view of a field’s research trends,influential works,and specialized topics.Design/methodology/approach:Ascientometric analysis was conducted,integrating natural language processing(NLP),topic modeling,and network analysis methods.The analytical approach was enhanced through a human-in-the-loop iterative process involving MOF research scientists at selected intervals.MOF researcher feedback was incorporated into our method.The data sample included 65,209 MOF research articles.Python3 and software tool VOSviewer were used to perform the analysis.Findings:The findings demonstrate the value of including domain experts in research workflows,refinement,and interpretation of results.At each stage of the analysis,the MOF researchers contributed to interpreting the results and method refinements targeting our focus Research evolution of metal organic frameworks:A scientometric approach with human-in-the-loop on MOF research.This study identified influential works and their themes.Our findings also underscore four main MOF research directions and applications.Research limitations:This study is limited by the sample(articles identified and referenced by the Cambridge Structural Database)that informed our analysis.Practical implications:Our findings contribute to addressing the current gap in fully mapping out the comprehensive landscape of MOF research.Additionally,the results will help domain scientists target future research directions.Originality/value:To the best of our knowledge,the number of publications collected for analysis exceeds those of previous studies.This enabled us to explore a more extensive body of MOF research compared to previous studies.Another contribution of our work is the iterative engagement of domain scientists,who brought in-depth,expert interpretation to the data analysis,helping hone the study. 展开更多
关键词 Scientometric Metal-Organic frameworks(MOFs) Network analysis Topic modeling Human-in-the-loop
下载PDF
Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
18
作者 Yusi Lei Liang Yue +4 位作者 Yuruo Qi Yubin Niu Shujuan Bao Jie Song Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期68-76,共9页
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor... Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention. 展开更多
关键词 dendrite-free gel polymer electrolyte metal organic framework sodium batteries
下载PDF
A progressive framework for rotary motion deblurring
19
作者 Jinhui Qin Yong Ma +2 位作者 Jun Huang Fan Fan You Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期159-172,共14页
The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for l... The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring. 展开更多
关键词 Rotary motion deblurring Progressive framework Blur extents factor TDM-CNN
下载PDF
Geospatial Technology Integration in Smart City Frameworks for Achieving Climate Neutrality by 2050: A Case Study of Limassol Municipality, Cyprus
20
作者 Antonis Papantoniou Chris Danezis Diofantos Hadjimitsis 《Journal of Geographic Information System》 2024年第1期44-60,共17页
This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate ... This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change. 展开更多
关键词 Smart Cities Geospatial Technologies Smart City frameworks Geospatial Integration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部