The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a subop...The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a suboptimal filter. Then, a new importance density function(IDF) was defined by the updated system equation. Particles drawn from the new IDF are more likely to be in the significant region of state space and the estimation accuracy can be improved. By using different suboptimal filter, different particle filters(PFs) can be developed in this framework. Extensions of this idea were also proposed by iteratively updating the system equation using particle filter itself, resulting in the iterated particle filter. Simulation results demonstrate the effectiveness of the proposed IDF.展开更多
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple fre...Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.展开更多
This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This d...This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This distribution of SINR can be used to make an analysis of average sum-rate,outage probability,and symbol error rate of massive MIMO downlink with MF at BS.From simulation,it is found that the derived approximate analytical expression for PDF of SINR is consistent with the simulated exact PDF from the definition of SINR in medium-scale and large-scale MIMO systems.展开更多
基金Project(61271296) supported by the National Natural Science Foundation of China
文摘The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a suboptimal filter. Then, a new importance density function(IDF) was defined by the updated system equation. Particles drawn from the new IDF are more likely to be in the significant region of state space and the estimation accuracy can be improved. By using different suboptimal filter, different particle filters(PFs) can be developed in this framework. Extensions of this idea were also proposed by iteratively updating the system equation using particle filter itself, resulting in the iterated particle filter. Simulation results demonstrate the effectiveness of the proposed IDF.
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
基金This work was supported by a grant from the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)of the Korean government(2021R1A3B1068304).The authors also acknowledge the support provided by a grant from the NRF funded by MSIT of the Korean government(RS-2023-00243840)and Brain Pool program(RS-2023-00222393).D.W.Boukhvalov acknowledges support from Jiangsu Innovative and Entrepreneurial Talents Project,and the Ministry of Science and Education of Russian Federation(FEUZ-2023-0013).
文摘通过氮掺杂TiO_(2)(N-TiO_(2))浸渍蜂窝过滤器构建了一系列原型光催化空气净化器(AP(N_(x)-C_(y)))系统,并用于在UV-LED光(1 W)照射条件下光催化分解0.5-5 ppm甲醛(CH_(2)O)蒸汽.在上述催化过滤器系统中,Nx和Cy分别代表N/Ti摩尔比(0-20)和N-TiO_(2)浓度(2-20 mg mL^(-1)).光催化分解实验结果表明,AP(N_(10)-C_(10))的性能最好,其催化CH2O转化为CO_(2)的转化率最高,循环反应10次后CO_(2)产率仍达到89.2%,在干燥空气中的清洁空气输送速率为9.45 L min^(-1).N10-C10的电荷载流子寿命(τa:1.70 ns)优于其他样品(如纯TiO_(2)的电荷载流子寿命为1.37 ns),这表明N缺陷(No)有助于降低带隙(3.10 eV)和产生氧空位OVs-Ti^(3+),这与密度泛函理论(DFT)模拟结果一致.采用原位漫反射红外傅里叶变换、电子顺磁共振和DFT分析等多种方法研究了CH_(2)O的光催化氧化途径.结果表明,氧化过程涉及多个能量有利的中间步骤(例如CH2O以CH_(2)O_(2)的形式在TiO_(2)-OV{110}表面的桥连O/OH基团上发生放热共价吸附,随后通过催化脱氢/氧化反应直接生成CO_(2):CH_(2)O_(2)/HCOO^(-)+•OH→H_(2)O+CO_(2)).这些步骤与具有N杂质的{101}表面上化学活性Ti原子的态密度计算结果一致.预计No缺陷和OVs的存在将通过降低活化能垒来影响反应能量和中间产物,从而在加湿条件下实现有效的矿化.综上,本文为设计和构建先进的光催化系统,并用于环境空气中醛类挥发性有机物(VOCs)的有效矿化提供了新思路.
基金Program for New Century Excellent Talents in Universities Under Grant No.NCET-04-0325
文摘Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.
基金Supported by the National Natural Science Foundation of China(No.61271230,61301107)the Fundamental Research Funds for the Central Universities(No.30920130122004)Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2013D02)
文摘This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This distribution of SINR can be used to make an analysis of average sum-rate,outage probability,and symbol error rate of massive MIMO downlink with MF at BS.From simulation,it is found that the derived approximate analytical expression for PDF of SINR is consistent with the simulated exact PDF from the definition of SINR in medium-scale and large-scale MIMO systems.