A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the ...A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.展开更多
A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module.Systematic numerical cal...A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module.Systematic numerical calcu- lations of the vapor to coolant heat transfer have been performed for parametric values of fin height,fin spacing, vertical bundle depth and tubeside heat transfer coefficient.Three dielectric fluids (R-113,FC-72,and FC-87) at atmospheric pressure were selected as the working fluids.For a single tube with optimized fin geometry,the average heat flux increased in the order of FC-87,R-113 and FC-72.Both the optimum fin height and optimum fin spacing increased with increasing vertical bundle depth.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51579244, 51506220 and 51356001)
文摘A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.
文摘A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module.Systematic numerical calcu- lations of the vapor to coolant heat transfer have been performed for parametric values of fin height,fin spacing, vertical bundle depth and tubeside heat transfer coefficient.Three dielectric fluids (R-113,FC-72,and FC-87) at atmospheric pressure were selected as the working fluids.For a single tube with optimized fin geometry,the average heat flux increased in the order of FC-87,R-113 and FC-72.Both the optimum fin height and optimum fin spacing increased with increasing vertical bundle depth.