A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its l...The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.展开更多
This paper describes the object-oriented implementational method of finite element structural analysis, gives the basic concepts of the object-oriented method and objectoriented programming, develops a complete class ...This paper describes the object-oriented implementational method of finite element structural analysis, gives the basic concepts of the object-oriented method and objectoriented programming, develops a complete class hierarchy structure of object-oriented finite element structural analysis, and gives a part C+ + code description.展开更多
Constant Velocity [CV] Joints are one of the most important components of front wheel drive axles. It is subjected to various stresses such as bending stress, shear stress and bearing stress. Apart from these stresses...Constant Velocity [CV] Joints are one of the most important components of front wheel drive axles. It is subjected to various stresses such as bending stress, shear stress and bearing stress. Apart from these stresses, it is also subjected to vibrations, due to out of balance tire or wheel and an out of round tire or wheel, or a bent rim. The main objective of this work is to reduce the stiffness of the damper, so that the damper can withstand within the required constraints [i.e. the forced frequency range of 80 Hz to 150 Hz]. The free vibrational and forced vibrational effects are investigated to predict the resonance phenomenon of the damper. Finite Element Analysis in ANSYS-11 software was performed to predict the dynamic behavior of the system under the required vibrational frequencies ranging from 80 Hz to 150 Hz at given loading conditions.展开更多
In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from...In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.展开更多
The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treat...The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treated by conventional discectomy (CONDIS) compared to minimally-invasive discectomy (MIVDIS). A validated three-dimensional model of an intact, healthy, adult full cervical spine (C1-C7) (INT) was constructed. This model was then modified to create two models, one simulating each of the above-men-tioned two techniques for discectomy of the severely degenerated C5-C6 disc. For each of these three models, we used the finite element analysis method to obtain three biomechanical parameters at various tissues in the model, under seven different physio-logically relevant loadings. For each of the biome-chanical parameters, the results were expressed as relative change in its value when a specified combi-nation of simulated discectomy model and applied loading was used, with respect to the corresponding value in the intact model. We then computed the value of a composite biomechanical performance in-dex (CBPI) for CONDIS and MIVDIS models, with this value incorporating all of the aforementioned relative changes. We found that CBPI was marginally lower for MIVDIS model. This trend is the same as that reported for the relative complications rate and outcome measures following conventional and mini-mally-invasive discectomies in the lumbar spine. From a healthcare perspective, one implication of our finding is that minimally-invasive cervical discectomy should be considered an attractive option provided that detailed patient selection criteria are clearly de-fined and strictly followed.展开更多
The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art desig...The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art design methods using advanced finite element methods will be presented. The design itself may seem as slow considering the actual computer efficiency, however comparing the results to theoretical analysis and to designing methods, precision and economical nature of the method can be justified. A large number of foreign industrial floor designs were made by this method;some of them will be shown as reference at the end of the article.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
对非对称结构形式的变厚度复合材料层合板在准静态压缩载荷下的失效机理进行了试验和数值研究。在ABAQUS/Explicit中建立全新的三维有限元模型(Finite element model, FEM),其中Hashin准则用于复合材料层合板渐进失效分析,内聚力建模用...对非对称结构形式的变厚度复合材料层合板在准静态压缩载荷下的失效机理进行了试验和数值研究。在ABAQUS/Explicit中建立全新的三维有限元模型(Finite element model, FEM),其中Hashin准则用于复合材料层合板渐进失效分析,内聚力建模用于模拟分层的萌生和扩展。根据试验得到的应变数据分析,不连续的中性轴使层合板中产生弯矩,这些弯矩与轴向压缩载荷相互耦合,共同作用在层合板上。有限元结果表明,在薄段和变厚度段的交界处存在明显的应力集中,且薄段的应力大于厚段的应力。在交界处,发生了分层以及纤维和基体的压缩损伤,这与试验的结果一致。FEM预测的极限荷载比试验测得的平均极限荷载小10.7%,证明了模型的可行性和合理性。展开更多
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.
文摘The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.
文摘This paper describes the object-oriented implementational method of finite element structural analysis, gives the basic concepts of the object-oriented method and objectoriented programming, develops a complete class hierarchy structure of object-oriented finite element structural analysis, and gives a part C+ + code description.
文摘Constant Velocity [CV] Joints are one of the most important components of front wheel drive axles. It is subjected to various stresses such as bending stress, shear stress and bearing stress. Apart from these stresses, it is also subjected to vibrations, due to out of balance tire or wheel and an out of round tire or wheel, or a bent rim. The main objective of this work is to reduce the stiffness of the damper, so that the damper can withstand within the required constraints [i.e. the forced frequency range of 80 Hz to 150 Hz]. The free vibrational and forced vibrational effects are investigated to predict the resonance phenomenon of the damper. Finite Element Analysis in ANSYS-11 software was performed to predict the dynamic behavior of the system under the required vibrational frequencies ranging from 80 Hz to 150 Hz at given loading conditions.
文摘In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.
文摘The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treated by conventional discectomy (CONDIS) compared to minimally-invasive discectomy (MIVDIS). A validated three-dimensional model of an intact, healthy, adult full cervical spine (C1-C7) (INT) was constructed. This model was then modified to create two models, one simulating each of the above-men-tioned two techniques for discectomy of the severely degenerated C5-C6 disc. For each of these three models, we used the finite element analysis method to obtain three biomechanical parameters at various tissues in the model, under seven different physio-logically relevant loadings. For each of the biome-chanical parameters, the results were expressed as relative change in its value when a specified combi-nation of simulated discectomy model and applied loading was used, with respect to the corresponding value in the intact model. We then computed the value of a composite biomechanical performance in-dex (CBPI) for CONDIS and MIVDIS models, with this value incorporating all of the aforementioned relative changes. We found that CBPI was marginally lower for MIVDIS model. This trend is the same as that reported for the relative complications rate and outcome measures following conventional and mini-mally-invasive discectomies in the lumbar spine. From a healthcare perspective, one implication of our finding is that minimally-invasive cervical discectomy should be considered an attractive option provided that detailed patient selection criteria are clearly de-fined and strictly followed.
文摘The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art design methods using advanced finite element methods will be presented. The design itself may seem as slow considering the actual computer efficiency, however comparing the results to theoretical analysis and to designing methods, precision and economical nature of the method can be justified. A large number of foreign industrial floor designs were made by this method;some of them will be shown as reference at the end of the article.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
文摘对非对称结构形式的变厚度复合材料层合板在准静态压缩载荷下的失效机理进行了试验和数值研究。在ABAQUS/Explicit中建立全新的三维有限元模型(Finite element model, FEM),其中Hashin准则用于复合材料层合板渐进失效分析,内聚力建模用于模拟分层的萌生和扩展。根据试验得到的应变数据分析,不连续的中性轴使层合板中产生弯矩,这些弯矩与轴向压缩载荷相互耦合,共同作用在层合板上。有限元结果表明,在薄段和变厚度段的交界处存在明显的应力集中,且薄段的应力大于厚段的应力。在交界处,发生了分层以及纤维和基体的压缩损伤,这与试验的结果一致。FEM预测的极限荷载比试验测得的平均极限荷载小10.7%,证明了模型的可行性和合理性。