The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and...The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles. Therefore the dispersion of powder particles is improved significantly.展开更多
Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studi...Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and differential thermal analysis (DTA).Results show that Mo5Si3-20%Al2O3 was obtained after 10 h of milling.The spontaneous reaction of powders takes place in an explosive mode.The crystallite sizes of Mo5Si3 and Al2O3 after milling for 30 h were 36.3 nm and 21.9 nm,respectively.With longer milling time,the intensities of Mo5Si3 and Al2O3 peaks decreased and became broad due to the decrease in crystallite size.Thermal analysis results and XRD analysis results show that the Mo5Si3-Al2O3 nanocomposite powders are very stable during milling (up to 30 h) and heating (up to 1 000℃) and no transformation takes place.展开更多
Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the...Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.展开更多
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ...α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
The ultrafine powders of YBa2Cu3O7-x with the size of 100nm were synthesized by Sol-Gel process using cit-rate as complex and ammonium hydroxide to adjust pH of solu-tion. The process of Sol formation and Gel polymeri...The ultrafine powders of YBa2Cu3O7-x with the size of 100nm were synthesized by Sol-Gel process using cit-rate as complex and ammonium hydroxide to adjust pH of solu-tion. The process of Sol formation and Gel polymerization of YBa2Cu3O7-x in the Sol-Gel synthetic reaction has bee studied. The particle size ,pruity, sintering activity and superconducting properties of YBa2Cu3O7-x prepared by Sol-Gel method are better than by solid state reaction.展开更多
The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particl...The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particles were characterized by the methods of thermo gravimetric and differential thermal analysis (TG DTA), X ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively.展开更多
Alumina (Al2O3) has been synthesized through combustion synthesis (CS) technique. The calcined products were characterized using X-ray diffractional analysis (XRD), scanning electron microscopy (SEM), transmission ele...Alumina (Al2O3) has been synthesized through combustion synthesis (CS) technique. The calcined products were characterized using X-ray diffractional analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA). TG-DTA results reveal the various stages involved in transition from γ-phase to α-Al2O3 phase. The first phase γ-Al2O3 was presented in the temperature range from 600°C-875°C as deduced from the XRD patterns with cubic crystal structure. The second stage occurs in the temperature range from 900°C-1000°C. In the final step, above 1000°C, the aluminium oxide appears completely as α-Al2O3, showing high crystallinity. The particle sizes are closely related to γ- to α-Al2O3 phase transition.展开更多
文摘The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles. Therefore the dispersion of powder particles is improved significantly.
基金Project(3ZS061-A25-038) supported by the Natural Science Foundation of Gansu Province,China
文摘Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and differential thermal analysis (DTA).Results show that Mo5Si3-20%Al2O3 was obtained after 10 h of milling.The spontaneous reaction of powders takes place in an explosive mode.The crystallite sizes of Mo5Si3 and Al2O3 after milling for 30 h were 36.3 nm and 21.9 nm,respectively.With longer milling time,the intensities of Mo5Si3 and Al2O3 peaks decreased and became broad due to the decrease in crystallite size.Thermal analysis results and XRD analysis results show that the Mo5Si3-Al2O3 nanocomposite powders are very stable during milling (up to 30 h) and heating (up to 1 000℃) and no transformation takes place.
基金Project(5JJ3010) supported by the Natural Science Foundation of Hunan Province, China
文摘Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.
基金Project (2006BAB02B05-04- 01/02) supported by the National Key Technologies R&D Program of China
文摘α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
文摘The ultrafine powders of YBa2Cu3O7-x with the size of 100nm were synthesized by Sol-Gel process using cit-rate as complex and ammonium hydroxide to adjust pH of solu-tion. The process of Sol formation and Gel polymerization of YBa2Cu3O7-x in the Sol-Gel synthetic reaction has bee studied. The particle size ,pruity, sintering activity and superconducting properties of YBa2Cu3O7-x prepared by Sol-Gel method are better than by solid state reaction.
文摘The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particles were characterized by the methods of thermo gravimetric and differential thermal analysis (TG DTA), X ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively.
文摘Alumina (Al2O3) has been synthesized through combustion synthesis (CS) technique. The calcined products were characterized using X-ray diffractional analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA). TG-DTA results reveal the various stages involved in transition from γ-phase to α-Al2O3 phase. The first phase γ-Al2O3 was presented in the temperature range from 600°C-875°C as deduced from the XRD patterns with cubic crystal structure. The second stage occurs in the temperature range from 900°C-1000°C. In the final step, above 1000°C, the aluminium oxide appears completely as α-Al2O3, showing high crystallinity. The particle sizes are closely related to γ- to α-Al2O3 phase transition.