Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband t...Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband to stimulate tissues and cells and is considered an effective therapeutic modality for specific medical disorders.The IR application as a medical therapy has advanced rapidly in recent years.For example,IR therapy like IR-emitting apparel and materials that can be run solely by body heat(does not need an external power supply)have been developed.New methods for providing FIR radiation to the human body have emerged due to technological advancements.Specialty saunas and lamps that emit pure FIR radiation have become effective,safe,and widely used therapeutic sources.Fibers infused with thermide,FIR emitting ceramic nanomaterials and knitted into fabrics are used as clothes and apparel to produce FIR radiation and benefit from its effects.A deeper understanding of FIR's significant innovations and biological implications could aid in improving therapeutic efficacy or developing new methods that use FIR wavelengths.展开更多
针对2.0~25.0μm波段传输的限制损耗问题,文章采用数值模拟方法研究影响碲基硫系光子晶体光纤(photonic crystal fiber,PCF)限制损耗的主要因素。光纤纤芯和包层材料采用Ge 20 As 20 Se 15 Te 45玻璃,通过改变纤芯直径、空气孔直径和空...针对2.0~25.0μm波段传输的限制损耗问题,文章采用数值模拟方法研究影响碲基硫系光子晶体光纤(photonic crystal fiber,PCF)限制损耗的主要因素。光纤纤芯和包层材料采用Ge 20 As 20 Se 15 Te 45玻璃,通过改变纤芯直径、空气孔直径和空气孔层数等参数进行2.0~25.0μm波段限制损耗的计算,结果表明,影响限制损耗的最大因素是纤芯直径,限制损耗随着纤芯直径和空气孔直径的增大而显著降低,随着空气孔层数的增加而降低;优化设计出一种低限制损耗的PCF,结果表明,当纤芯直径和节距为8.0μm、空气孔直径为7.2μm、包层空气孔层数为4时,该PCF在2.0~25.0μm波长范围的限制损耗低于1.4×10^(-6) dB/m,满足低损耗传输要求。文章研究结果对2.0~25.0μm波段光信号的传输具有一定的意义。展开更多
文摘Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband to stimulate tissues and cells and is considered an effective therapeutic modality for specific medical disorders.The IR application as a medical therapy has advanced rapidly in recent years.For example,IR therapy like IR-emitting apparel and materials that can be run solely by body heat(does not need an external power supply)have been developed.New methods for providing FIR radiation to the human body have emerged due to technological advancements.Specialty saunas and lamps that emit pure FIR radiation have become effective,safe,and widely used therapeutic sources.Fibers infused with thermide,FIR emitting ceramic nanomaterials and knitted into fabrics are used as clothes and apparel to produce FIR radiation and benefit from its effects.A deeper understanding of FIR's significant innovations and biological implications could aid in improving therapeutic efficacy or developing new methods that use FIR wavelengths.
文摘针对2.0~25.0μm波段传输的限制损耗问题,文章采用数值模拟方法研究影响碲基硫系光子晶体光纤(photonic crystal fiber,PCF)限制损耗的主要因素。光纤纤芯和包层材料采用Ge 20 As 20 Se 15 Te 45玻璃,通过改变纤芯直径、空气孔直径和空气孔层数等参数进行2.0~25.0μm波段限制损耗的计算,结果表明,影响限制损耗的最大因素是纤芯直径,限制损耗随着纤芯直径和空气孔直径的增大而显著降低,随着空气孔层数的增加而降低;优化设计出一种低限制损耗的PCF,结果表明,当纤芯直径和节距为8.0μm、空气孔直径为7.2μm、包层空气孔层数为4时,该PCF在2.0~25.0μm波长范围的限制损耗低于1.4×10^(-6) dB/m,满足低损耗传输要求。文章研究结果对2.0~25.0μm波段光信号的传输具有一定的意义。