This study constructs a quasi-natural experiment based on the expansion of the Yangtze River Delta urban agglomeration(YRDUA) of China in 2010 to investigate the impact and inner mechanism of urban agglomeration expan...This study constructs a quasi-natural experiment based on the expansion of the Yangtze River Delta urban agglomeration(YRDUA) of China in 2010 to investigate the impact and inner mechanism of urban agglomeration expansion on fine particulate matter(PM_(2.5)) concentrations through propensity scores in difference-in-differences models(PSM-DID) using panel data from 286 prefecturelevel cities in China from 2003 to 2016. The results show that 1) urban agglomeration expansion contributes to an overall decrease in PM_(2.5)concentration, which is mainly achieved from the original cities. For the new cities, on the other hand, the expansion significantly increases the local PM_(2.5)concentration. 2) In the long term, the significant influence of urban agglomeration expansion on PM_(2.5)concentration lasts for three years and gradually decreases. A series of robustness tests confirm the applicability of the PSM-DID model.3) Cities with weaker government regulation, a better educated population and higher per capita income present stronger PM_(2.5)reduction effects. 4) Urban agglomeration expansion affects the PM_(2.5)concentration mainly through industrial transfer and population migration, which cause a decrease in the PM_(2.5)concentration in the original cities and an increase in the PM_(2.5)concentration in the new cities.Corresponding policy suggestions are proposed based on the conclusions.展开更多
Household air pollution is considered to be among the top environmental risks in China.To examine the performance of improved stoves for reduction of indoor particulate matter(PM) emission and exposure in rural hous...Household air pollution is considered to be among the top environmental risks in China.To examine the performance of improved stoves for reduction of indoor particulate matter(PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China.Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM0.25. The daily averaged exposure concentrations of PM0.25, PM1.0, PM2.5 and total suspended particle for all the surveyed residents were 74.4 ± 41.1, 159.3 ± 74.3, 176.7 ± 78.1 and 217.9 ± 78.1 μg/m3,respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25 μg/m3. Submicron particles PM1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure.展开更多
基金Under the auspices of Chinese National Funding of Social Sciences (No.17AGL005)Institute of Socialism with Chinese Characteristics of Southeast University (No.DDZTZK2021C11)。
文摘This study constructs a quasi-natural experiment based on the expansion of the Yangtze River Delta urban agglomeration(YRDUA) of China in 2010 to investigate the impact and inner mechanism of urban agglomeration expansion on fine particulate matter(PM_(2.5)) concentrations through propensity scores in difference-in-differences models(PSM-DID) using panel data from 286 prefecturelevel cities in China from 2003 to 2016. The results show that 1) urban agglomeration expansion contributes to an overall decrease in PM_(2.5)concentration, which is mainly achieved from the original cities. For the new cities, on the other hand, the expansion significantly increases the local PM_(2.5)concentration. 2) In the long term, the significant influence of urban agglomeration expansion on PM_(2.5)concentration lasts for three years and gradually decreases. A series of robustness tests confirm the applicability of the PSM-DID model.3) Cities with weaker government regulation, a better educated population and higher per capita income present stronger PM_(2.5)reduction effects. 4) Urban agglomeration expansion affects the PM_(2.5)concentration mainly through industrial transfer and population migration, which cause a decrease in the PM_(2.5)concentration in the original cities and an increase in the PM_(2.5)concentration in the new cities.Corresponding policy suggestions are proposed based on the conclusions.
基金Natural Science Foundation Committee of China(No.41390240,41130754,and 41161160559)National Basic Research Program of China(No.2014CB441101)+1 种基金Science&Technology Basic Special Fund(No.2013FY111100-04)Global Alliance for Clean Cookstoves under PR-15-39809
文摘Household air pollution is considered to be among the top environmental risks in China.To examine the performance of improved stoves for reduction of indoor particulate matter(PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China.Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM0.25. The daily averaged exposure concentrations of PM0.25, PM1.0, PM2.5 and total suspended particle for all the surveyed residents were 74.4 ± 41.1, 159.3 ± 74.3, 176.7 ± 78.1 and 217.9 ± 78.1 μg/m3,respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25 μg/m3. Submicron particles PM1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure.