Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a L...Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.展开更多
[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine...[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation.展开更多
基金supported by the National Key Technology Research and Development Program(2012BAD21B0202-02)the Natural Science Foundation of Heilongjiang Province of China(C201340)the assisted project by Heilong Jiang Postdoctoral Funds for Scientific Research Initiation(LBH-Q13006)
文摘Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.
基金Supported by Key Project of the Education Department of Sichuan Province(09ZA079)College-level Fund of Sichuan Agricultural University(64070113)+3 种基金National Science and Technology Support Program of China(2011BAC09B05)Science and Technology Support Program of Sichuan Province(2010NZ0049)National Natural Science Foundation of China(30771717)Fund for Forest Tree Germplasm Resources in the Upper Reaches of the Yangtze River and Breeding Technology Innovation Team(00370503)
文摘[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation.