期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fine root litter quality regulates soil carbon storage efficiency in subtropical forest soils
1
作者 Shan Xu Fanglong Su +4 位作者 Emma J.Sayer Shu Kee Lam Xiankai Lu Chengshuai Liu Derrick Y.F.Lai 《Soil Ecology Letters》 CSCD 2023年第4期65-80,共16页
●High-quality and low-quality root litter had contrasting patterns of mass loss.●Greater litter-derived C was incorporated into soils under high-quality root litter.●Root litter decay rate or litter-derived C were ... ●High-quality and low-quality root litter had contrasting patterns of mass loss.●Greater litter-derived C was incorporated into soils under high-quality root litter.●Root litter decay rate or litter-derived C were related to soil microbial diversity.●Root litter quality had little effect on soil physicochemical properties.●High root litter quality was the main driver of enhanced soil C storage efficiency.Decomposing root litter is a major contributor to soil carbon(C)storage in forest soils.During decomposition,the quality of root litter could play a critical role in soil C storage.However,it is unclear whether root litter quality influences soil C storage efficiency.We conducted a two-year greenhouse decomposition experiment using 13C-labeled fine root litter of two tree species to investigate how root litter quality,represented by C to nitrogen(C/N)ratios,regulates decomposition and C storage efficiency in subtropical forest soils in China.‘High-quality’root litter(C/N ratio=26)decayed faster during the first year(0−410 days),whereas‘low-quality’root litter(C/N ratio=46)decomposed faster toward the end of the two-year period(598−767 days).However,over the two years of the study,mass loss from high-quality root litter(29.14±1.42%)was lower than‘low-quality’root litter(33.01±0.54%).Nonetheless,root litter C storage efficiency(i.e.,the ratio of new root litter-derived soil C to total mineralized root litter C)was significantly greater for high-quality root litter,with twice as much litter-derived C stored in soils compared to low-quality root litter at the end of the experiment.Root litter quality likely influenced soil C storage via changes in microbial diversity,as the decomposition of high-quality litter declined with increasing bacterial diversity,whereas the amount of litter-derived soil C from low-quality litter increased with fungal diversity.Our results thus reveal that root litter quality mediates decomposition and C storage in subtropical forest soils in China and future work should consider the links between root litter quality and soil microbial diversity. 展开更多
关键词 fine root litter quality root litter decomposition litter carbon storage efficiency soil organic carbon accumulation subtropical forest
原文传递
亚热带典型森林凋落物及细根的生物量和碳储量研究 被引量:7
2
作者 吴春生 刘苑秋 +5 位作者 魏晓华 李小东 刘亮英 郭晓敏 欧阳勋志 莫其锋 《西南林业大学学报(自然科学)》 CAS 北大核心 2016年第5期45-51,共7页
细根和地上凋落物分解和周转,是建模和预测土壤碳汇需要测量的2个关键生态过程,通过对亚热带典型常绿阔叶林、杉木、马尾松林和毛竹林110个样地内凋落物和细根的生物量和碳储量进行研究,分析了森林细根和地上凋落物的生物量和碳储量以... 细根和地上凋落物分解和周转,是建模和预测土壤碳汇需要测量的2个关键生态过程,通过对亚热带典型常绿阔叶林、杉木、马尾松林和毛竹林110个样地内凋落物和细根的生物量和碳储量进行研究,分析了森林细根和地上凋落物的生物量和碳储量以及彼此之间的差异和相互关系。结果表明:杉木林凋落物生物量(4.415±0.390)t/hm2最大,毛竹林(2.918±0.310)t/hm2最小,且与其他森林差异显著;凋落物碳储量毛竹林(1.176±0.260)t/hm2最小,与其他森林碳储量差异显著,最大的是常绿阔叶林(1.725±0.16)t/hm2;4种不同森林类型细根生物量和碳储量差异显著,同一森林类型不同土层活和死细根生物量差异显著;从活/死根值中可知,常绿阔叶林细根周转要比针叶林(杉木、马尾松)快。 展开更多
关键词 细根 凋落物 生物量 碳储量 亚热带典型森林
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部