Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fi...Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.展开更多
According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G...According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.展开更多
The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and ...The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, ...A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.展开更多
The characteristics and formation mechanisms of the mixed siliciclastic-carbonate reservoirs of the Paleogene Shahejie Formation in the central Bohai Sea were examined based on polarized light microscopy and scanning ...The characteristics and formation mechanisms of the mixed siliciclastic-carbonate reservoirs of the Paleogene Shahejie Formation in the central Bohai Sea were examined based on polarized light microscopy and scanning electron microscopy observations, X-ray diffrac- tometry, carbon and oxygen stable isotope geochemistry, and integrated fluid inclusion analysis. High-quality reservoirs are mainly distributed in Type I and Type II mixed siliciclastic-carbonate sediments, and the dominant pore types include residual primary intergranular pores and intrafossil pores, feldspar dissolution pores mainly devel- oped in Type II sediments. Type I mixed sediments are characterized by precipitation of early pore-lining dolo- mite, relatively weak mechanical compaction during deep burial, and the occurrence of abundant oil inclusions in high-quality reservoirs. Microfacies played a critical role in the formation of the mixed reservoirs, and high-quality reservoirs are commonly found in high-energy environ- ments, such as fan delta underwater distributary channels, mouth bars, and submarine uplift beach bars. Abundant intrafossil pores were formed by bioclastic decay, and secondary pores due to feldspar dissolution further enhance reservoir porosity. Mechanical compaction was inhibited by the precipitation of pore-lining dolomite formed during early stage, and oil emplacement has further led to the preservation of good reservoir quality.展开更多
For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the hi...For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . The effects of salinity and humus on the fine-grained sediments have been analyzed through the synthetic study of the aspects of flocculation/coagulation power ( F), diameter (D) and zeta potential (Z). And the microcosmic configuration of the flocs has been analyzed by using a scan electron microscope and Fourier Transform Infrared Spectrometry. The results show that: ( 1 ) with the increase of salinity, F and D become greater and Z becomes smaller, and with the increase of the concentration of humus, F becomes smaller, but D and Z become greater; (2) the microcosmic configuration of the flocculation shows that humus packs on the fine sediments in the form of salt, and the flocculation model of C - P - OM (C stands for clay; P cations; OM organic materials) can successfully demonstrate the mechanism of the formation of the finegrained sediments in the high-turbid area of the Changjiang Estuary.展开更多
The Carboniferous system in the Xiaohaizi area, Bachu County, Xinjiang Uygur Autonomous Region, composed of typical mixed terrigenous clastic, carbonate and sulphate sediments, was mainly deposited in the tidal flat a...The Carboniferous system in the Xiaohaizi area, Bachu County, Xinjiang Uygur Autonomous Region, composed of typical mixed terrigenous clastic, carbonate and sulphate sediments, was mainly deposited in the tidal flat and lagoon environments. The mixed sediments occur as the following eleven types: 1. limestone intercalated with siltstone; 2. interbeds of shale and limestone; 3. gypsolyte interbedded with limestone; 4. gypsolyte intercalated with siltstone; 5. gypsolyte interbedded with shale; 6. gypsolyte intercalated with siltstone, limestone and dolomite; 7. siltstone interbedded with gypsolyte and limestone; 8. terrigenous detritus scattered in carbonate matrix; 9. carbonate as cement in clastic rocks; 10. mixed sediments of carbonate and terrigenous mud; 11. mixed sediments of carbonate grains with terrigenous sand. Based on the analysis of the dynamic mechanism of mixed sediments, it is believed that these types of mixed sediments in the study area were controlled by climate, sea level change and sources of sediments.展开更多
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size...In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.展开更多
Two depositional processes controlled the muddy sediments in the South China Sea Basin. Bathyal sediments depositional rate was 7.66 cm/la in the northern continental slope of the Basin where turbidity current was alm...Two depositional processes controlled the muddy sediments in the South China Sea Basin. Bathyal sediments depositional rate was 7.66 cm/la in the northern continental slope of the Basin where turbidity current was almost nonexistent. In the northern margin of the Basin, abyssal sediment depositional rate was 5.05cm/ka and turbidity current occurrence averaged 0.22 per 1000 years. Turbidite was found in the middle of the Basin. Over half of the muddy sediments in the deep sea basin were deposited by turbidity currents, and had typically graded bedding, and contents of organic matter, calcareous material and micropaleontologic species inconsistent with the environment.展开更多
Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina,...Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina, namely organic-rich lamina, organic-bearing lamina, clay lamina and silty lamina, are developed in the Longmaxi Formation of Well Wuxi 2, and they form 2 kinds of lamina set and 5 kinds of beds. Because of increasing supply of terrigenous clasts and enhancing hydrodynamics and associated oxygen levels, the contents of TOC and brittle mineral reduce and content of clay mineral increases gradually as the depth becomes shallow. Organic-rich lamina, organic-rich + organic-bearing lamina set and organic-rich bed dominate the small layers 1-3 of Member 1 of the Longmaxi Formation, suggesting anoxic and weak hydraulic depositional setting. Organic-rich lamina, along with organic-bearing lamina and silty lamina, appear in small layer 4, suggesting increased oxygenated and hydraulic level. Small layers 1-3 are the best interval and drilling target of shale gas exploration and development.展开更多
An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is stu...An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.展开更多
Until 1980s,mixed siliciclastic-carbonate sediments(MSCSs)had been thought as odd exception and not important.However,MSCSs are quite common in the modern and the ancient times and can be important in
Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respect...Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.展开更多
The changing patterns of land cover and land use in the tropical river basin over time are critical. The hydrological phenomena at basin and sub basin scale are affected positively or negatively by dynamics of the lan...The changing patterns of land cover and land use in the tropical river basin over time are critical. The hydrological phenomena at basin and sub basin scale are affected positively or negatively by dynamics of the land cover and land use patterns. Hence identifying causes and driving factors aid in taking appropriate measures to avert the impacts. This study determined the influences of sub basins dominated by tea plantations, forests and agricultural land uses in terms of streamflow and sediment flux variability in Sondu Miriu River Basin in Kenya, East Africa. Field-based investigations were conducted through sampling of flow velocities, turbidity and TSSC obtained from existing River Gauging Stations established within the three sub basins. The sub basin dominated by mixed farming land cover exhibits high turbidity approximately 620 NTU and high levels of total suspended sediment concentration (TSSC) of the order of 630 mg/l in wet seasons. The turbidity levels and TSSC were low in sub basins dominated by forest and tea plantations with approximately mean value of 17 - 29 NTU and 0.019 g/l. The sediment loads in sub basin dominated by mixed farming in the pre planting season in January to February were about 900 tonnes/day higher than that in crop growing season. In sub basins dominated by forest cover and tea plantations, sediment loads were low ranging between 2 - 7 tonnes/day. The relationship between stream flows and area under tea plantations, forests and mixed farming ranged between R<sup>2</sup> of 0.025 and 0.16. Tea plantations and forests influence the stream flows and sediment yields in long term duration while in mixed farming variations were observed seasonally. The strong relationships between rainfall and stream flows at the sub basins ranging between R<sup>2</sup> of 0.84 and 0.97 revealed the significance of rainfall in hydrologic response of the Sondu Miriu River Basin.展开更多
The deformation structure of soft sediments has always been a research hotspot,which is of great significance for analyzing the tectonic and sedimentary evolution background of a basin,as well as the physical properti...The deformation structure of soft sediments has always been a research hotspot,which is of great significance for analyzing the tectonic and sedimentary evolution background of a basin,as well as the physical properties of reservoirs.Previous studies have reported that a large number of soft sediment deformation structures are developed in the western part of Liaohe depression.In this study,through core observation and thin section identification,various types of deformation structures are identified in the core samples which are collected from the upper Es4 in the Leijia region,western sag of Liaohe depression,such as liquefied dikes,liquefied breccia,convoluted laminae,annular bedding,synsedimentary faults,vein structures,etc.Based on the characteristics of core structure,single well profile and continuous well profile,combined with the regional background,this study clarifies that the deformation structure of soft sediments in the study area is mainly caused by seismic action.It is found that the permeability and porosity of deformation layers in the study area are higher than those of the undeformation layers,which proves that the deformation structure of soft sediments has a good effect on improving the physical properties of reservoirs.展开更多
Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and c...Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and concentrating of suspended sediment in the estuary were also analysed in respect to the circulation, flocculation and stratified interface resulting from mixing.The calculation results by two-dimentional box model have confirmed the effects of the circulation on the concentrating of suspended sediment in the estuary. The conclusions derived from this work have deepened the understanding on the mixing in the Changjiang River estuary and are of significance in bo’th theory and practice.展开更多
In an estuary,tidal,wave and other marine powers interact with the coast in different ways and affect estuary morphology as well as its evolution.In the Huanghe(Yellow) River estuaries and nearby delta,there are many ...In an estuary,tidal,wave and other marine powers interact with the coast in different ways and affect estuary morphology as well as its evolution.In the Huanghe(Yellow) River estuaries and nearby delta,there are many small sediment-affected estuaries with a unique morphology,such as the Xiaoqing River estuary.In this study,we investigated the special evolution and genetic mechanism of the Xiaoqing River estuary by analyzing graphic and image data with a numerical simulation method.The results show that NE and NE-E tide waves are the main driving force for sandbar formation.Sediment shoals have originated from huge amounts of sediment from the Huanghe River,with consequent deposition at the Xiaoqing River mouth.The lateral suspended sediments beyond the river mouth move landward.Siltation takes place on the northern shoreline near the river mouth whereas erosion occurs in the south.The deposits come mainly from scouring of the shallow seabed on the northern side of the estuary.Storm surges speed up deposition in the estuary.Development of the sediment shoals has occurred in two steps involving the processes of growth and further southward extension.Although the southward shift increases the river curvature and length,the general eastward orientation of the estuary is unlikely to change.Processes on the adjacent shorelines do not affect the development of the sediment shoals.The study presents a morphodynamic evolutionary model for the Xiaoqing River estuary,with a long-term series cycle,within which a relatively short cycle occurs.展开更多
The multi-source mixed sedimentation resulted in a unique series of mixed fine-grained sedimentary rocks evolved within the Permian Lucaogou Formation in the Jimusar Sag,located in the southeastern Junggar Basin,China...The multi-source mixed sedimentation resulted in a unique series of mixed fine-grained sedimentary rocks evolved within the Permian Lucaogou Formation in the Jimusar Sag,located in the southeastern Junggar Basin,China.The variety of lithofacies within this series resulted in pronounced heterogeneity of pore structures,complicating the analysis of fluid occurrence space and state within reservoirs.As a result,the impact of lithofacies on fluid mobility remains ambiguous.In this study,we employed qualitative methods,such as field emission scanning electron microscopy(FE-SEM)and thin section observation,and quantitative analyses,including X-ray diffraction(XRD),total organic carbon(TOC),vitrinite reflectance(Ro),high-pressure mercury intrusion(HPMI)porosimetry,and nuclear magnetic resonance(NMR),along with linear and grey correlation analyses.This approach helped delineate the effective pore characteristics and principal factors influencing movable fluids in the fine-grained mixed rocks of the Lucaogou Formation in the Jimusar Sag,Junggar Basin.The findings indicate the development of three fundamental lithologies within the Lucaogou Formation:fine sandstone,siltstone,and mudstone.Siltstones exhibit the highest movable fluid saturation(MFS),followed by fine sandstones and mudstones sequentially.Fluid mobility is predominantly governed by the content of brittle minerals,the sorting coefficient(Sc),effective pore connectivity(EPC),and the fractal dimension(D_(2)).High content of brittle minerals favors the preservation of intergranular pores and the generation of microcracks,thus offering more occurrence space for movable fluids.A moderate Sc indicates the presence of larger connecting throats between pores,enhancing fluid mobility.Elevated EPC suggests more interconnected pore throat spaces,facilitating fluid movement.A higher D_(2)implies a more intricate effective pore structure,increasing the surface area of the rough pores and thereby impeding fluid mobility.Ultimately,this study developed a conceptual model that illustrates fluid distribution patterns across different reservoirs in the Lucaogou Formation,incorporating sedimentary contexts.This model also serves as a theoretical framework for assessing fluid mobility and devising engineering strategies for hydrocarbon exploitation in mixed fine-grained sedimentary rocks.展开更多
基金supported by the Study on Astronomical Stratigraphic Period of Lacustrine Shale and High Resolution Sedimentary Cycle in Logging(41872166)of the National Natural Science Foundation of China and the Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC.
文摘Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.
基金Supported by the National Major Research and Development Project(2020YFA0710504,2022YFF0801204)PetroChina Science and Technology Major Project(2019E-26)。
文摘According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.
基金founded by the National Natural Science Foundation of China(Grant No.41772130)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_2602)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ035)the Fundamental Research Program of Shanxi Province(Grant No.202103021223283)。
文摘The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
基金jointly supported by five projects which are respectively funded by the National Natural Science Foundation of China(Nos.41402253,41272316,41372287)the Postdoctoral Science Foundation of China(Nos.2014M561963,2016T90653)
文摘A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
基金financially supported by the National Science & Technology Specific Project (Grant No. 2011ZX05023-006)
文摘The characteristics and formation mechanisms of the mixed siliciclastic-carbonate reservoirs of the Paleogene Shahejie Formation in the central Bohai Sea were examined based on polarized light microscopy and scanning electron microscopy observations, X-ray diffrac- tometry, carbon and oxygen stable isotope geochemistry, and integrated fluid inclusion analysis. High-quality reservoirs are mainly distributed in Type I and Type II mixed siliciclastic-carbonate sediments, and the dominant pore types include residual primary intergranular pores and intrafossil pores, feldspar dissolution pores mainly devel- oped in Type II sediments. Type I mixed sediments are characterized by precipitation of early pore-lining dolo- mite, relatively weak mechanical compaction during deep burial, and the occurrence of abundant oil inclusions in high-quality reservoirs. Microfacies played a critical role in the formation of the mixed reservoirs, and high-quality reservoirs are commonly found in high-energy environ- ments, such as fan delta underwater distributary channels, mouth bars, and submarine uplift beach bars. Abundant intrafossil pores were formed by bioclastic decay, and secondary pores due to feldspar dissolution further enhance reservoir porosity. Mechanical compaction was inhibited by the precipitation of pore-lining dolomite formed during early stage, and oil emplacement has further led to the preservation of good reservoir quality.
文摘For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . The effects of salinity and humus on the fine-grained sediments have been analyzed through the synthetic study of the aspects of flocculation/coagulation power ( F), diameter (D) and zeta potential (Z). And the microcosmic configuration of the flocs has been analyzed by using a scan electron microscope and Fourier Transform Infrared Spectrometry. The results show that: ( 1 ) with the increase of salinity, F and D become greater and Z becomes smaller, and with the increase of the concentration of humus, F becomes smaller, but D and Z become greater; (2) the microcosmic configuration of the flocculation shows that humus packs on the fine sediments in the form of salt, and the flocculation model of C - P - OM (C stands for clay; P cations; OM organic materials) can successfully demonstrate the mechanism of the formation of the finegrained sediments in the high-turbid area of the Changjiang Estuary.
基金supported by the National Major Key Project during the"Eighth Five-Year Plan period".
文摘The Carboniferous system in the Xiaohaizi area, Bachu County, Xinjiang Uygur Autonomous Region, composed of typical mixed terrigenous clastic, carbonate and sulphate sediments, was mainly deposited in the tidal flat and lagoon environments. The mixed sediments occur as the following eleven types: 1. limestone intercalated with siltstone; 2. interbeds of shale and limestone; 3. gypsolyte interbedded with limestone; 4. gypsolyte intercalated with siltstone; 5. gypsolyte interbedded with shale; 6. gypsolyte intercalated with siltstone, limestone and dolomite; 7. siltstone interbedded with gypsolyte and limestone; 8. terrigenous detritus scattered in carbonate matrix; 9. carbonate as cement in clastic rocks; 10. mixed sediments of carbonate and terrigenous mud; 11. mixed sediments of carbonate grains with terrigenous sand. Based on the analysis of the dynamic mechanism of mixed sediments, it is believed that these types of mixed sediments in the study area were controlled by climate, sea level change and sources of sediments.
基金funded by the Natural Sciences and Engineering Research Council,Canada,via the COSTA(Continental Slope Stability)-Canada projectsupported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF)+1 种基金funded by the Ministry of Science,ICT&Future Planning(Grant No.2012M3A2A1050983)the Research Project (11-7622,13-3212)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)
文摘In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.
文摘Two depositional processes controlled the muddy sediments in the South China Sea Basin. Bathyal sediments depositional rate was 7.66 cm/la in the northern continental slope of the Basin where turbidity current was almost nonexistent. In the northern margin of the Basin, abyssal sediment depositional rate was 5.05cm/ka and turbidity current occurrence averaged 0.22 per 1000 years. Turbidite was found in the middle of the Basin. Over half of the muddy sediments in the deep sea basin were deposited by turbidity currents, and had typically graded bedding, and contents of organic matter, calcareous material and micropaleontologic species inconsistent with the environment.
基金Supported by the National Natural Science Foundation of China(4160211941572079)
文摘Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina, namely organic-rich lamina, organic-bearing lamina, clay lamina and silty lamina, are developed in the Longmaxi Formation of Well Wuxi 2, and they form 2 kinds of lamina set and 5 kinds of beds. Because of increasing supply of terrigenous clasts and enhancing hydrodynamics and associated oxygen levels, the contents of TOC and brittle mineral reduce and content of clay mineral increases gradually as the depth becomes shallow. Organic-rich lamina, organic-rich + organic-bearing lamina set and organic-rich bed dominate the small layers 1-3 of Member 1 of the Longmaxi Formation, suggesting anoxic and weak hydraulic depositional setting. Organic-rich lamina, along with organic-bearing lamina and silty lamina, appear in small layer 4, suggesting increased oxygenated and hydraulic level. Small layers 1-3 are the best interval and drilling target of shale gas exploration and development.
文摘An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.
基金financially supported by National Natural Science Foundation of China (Grant No. 41372123)
文摘Until 1980s,mixed siliciclastic-carbonate sediments(MSCSs)had been thought as odd exception and not important.However,MSCSs are quite common in the modern and the ancient times and can be important in
文摘Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.
文摘The changing patterns of land cover and land use in the tropical river basin over time are critical. The hydrological phenomena at basin and sub basin scale are affected positively or negatively by dynamics of the land cover and land use patterns. Hence identifying causes and driving factors aid in taking appropriate measures to avert the impacts. This study determined the influences of sub basins dominated by tea plantations, forests and agricultural land uses in terms of streamflow and sediment flux variability in Sondu Miriu River Basin in Kenya, East Africa. Field-based investigations were conducted through sampling of flow velocities, turbidity and TSSC obtained from existing River Gauging Stations established within the three sub basins. The sub basin dominated by mixed farming land cover exhibits high turbidity approximately 620 NTU and high levels of total suspended sediment concentration (TSSC) of the order of 630 mg/l in wet seasons. The turbidity levels and TSSC were low in sub basins dominated by forest and tea plantations with approximately mean value of 17 - 29 NTU and 0.019 g/l. The sediment loads in sub basin dominated by mixed farming in the pre planting season in January to February were about 900 tonnes/day higher than that in crop growing season. In sub basins dominated by forest cover and tea plantations, sediment loads were low ranging between 2 - 7 tonnes/day. The relationship between stream flows and area under tea plantations, forests and mixed farming ranged between R<sup>2</sup> of 0.025 and 0.16. Tea plantations and forests influence the stream flows and sediment yields in long term duration while in mixed farming variations were observed seasonally. The strong relationships between rainfall and stream flows at the sub basins ranging between R<sup>2</sup> of 0.84 and 0.97 revealed the significance of rainfall in hydrologic response of the Sondu Miriu River Basin.
基金funded by the National Natural Science Foundation“Event Sedimentation in Lacustrine Organic-Rich Mudrock:Taking the Chang 7-8 Member of the Ordos Basin as an Example”(Grant No.41802130).
文摘The deformation structure of soft sediments has always been a research hotspot,which is of great significance for analyzing the tectonic and sedimentary evolution background of a basin,as well as the physical properties of reservoirs.Previous studies have reported that a large number of soft sediment deformation structures are developed in the western part of Liaohe depression.In this study,through core observation and thin section identification,various types of deformation structures are identified in the core samples which are collected from the upper Es4 in the Leijia region,western sag of Liaohe depression,such as liquefied dikes,liquefied breccia,convoluted laminae,annular bedding,synsedimentary faults,vein structures,etc.Based on the characteristics of core structure,single well profile and continuous well profile,combined with the regional background,this study clarifies that the deformation structure of soft sediments in the study area is mainly caused by seismic action.It is found that the permeability and porosity of deformation layers in the study area are higher than those of the undeformation layers,which proves that the deformation structure of soft sediments has a good effect on improving the physical properties of reservoirs.
文摘Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and concentrating of suspended sediment in the estuary were also analysed in respect to the circulation, flocculation and stratified interface resulting from mixing.The calculation results by two-dimentional box model have confirmed the effects of the circulation on the concentrating of suspended sediment in the estuary. The conclusions derived from this work have deepened the understanding on the mixing in the Changjiang River estuary and are of significance in bo’th theory and practice.
基金Supported by the Knowledge Innovative Program of Chinese Academy of Sciences(No.KZCX2-EW-207)the National Natural Science Foundation of China(Nos.41106041,40706035,40676037,41076031)+1 种基金the Open Fund of the Key Laboratory of Marine Resources and Environmental Geology, SOA(No.MASEG200807)the Marine Scientific Research and the Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences(No.MGE2009KG04)
文摘In an estuary,tidal,wave and other marine powers interact with the coast in different ways and affect estuary morphology as well as its evolution.In the Huanghe(Yellow) River estuaries and nearby delta,there are many small sediment-affected estuaries with a unique morphology,such as the Xiaoqing River estuary.In this study,we investigated the special evolution and genetic mechanism of the Xiaoqing River estuary by analyzing graphic and image data with a numerical simulation method.The results show that NE and NE-E tide waves are the main driving force for sandbar formation.Sediment shoals have originated from huge amounts of sediment from the Huanghe River,with consequent deposition at the Xiaoqing River mouth.The lateral suspended sediments beyond the river mouth move landward.Siltation takes place on the northern shoreline near the river mouth whereas erosion occurs in the south.The deposits come mainly from scouring of the shallow seabed on the northern side of the estuary.Storm surges speed up deposition in the estuary.Development of the sediment shoals has occurred in two steps involving the processes of growth and further southward extension.Although the southward shift increases the river curvature and length,the general eastward orientation of the estuary is unlikely to change.Processes on the adjacent shorelines do not affect the development of the sediment shoals.The study presents a morphodynamic evolutionary model for the Xiaoqing River estuary,with a long-term series cycle,within which a relatively short cycle occurs.
基金supported by the Development Project of Xinjiang Conglomerate Reservoir Laboratory(Grant No.2020D04045).
文摘The multi-source mixed sedimentation resulted in a unique series of mixed fine-grained sedimentary rocks evolved within the Permian Lucaogou Formation in the Jimusar Sag,located in the southeastern Junggar Basin,China.The variety of lithofacies within this series resulted in pronounced heterogeneity of pore structures,complicating the analysis of fluid occurrence space and state within reservoirs.As a result,the impact of lithofacies on fluid mobility remains ambiguous.In this study,we employed qualitative methods,such as field emission scanning electron microscopy(FE-SEM)and thin section observation,and quantitative analyses,including X-ray diffraction(XRD),total organic carbon(TOC),vitrinite reflectance(Ro),high-pressure mercury intrusion(HPMI)porosimetry,and nuclear magnetic resonance(NMR),along with linear and grey correlation analyses.This approach helped delineate the effective pore characteristics and principal factors influencing movable fluids in the fine-grained mixed rocks of the Lucaogou Formation in the Jimusar Sag,Junggar Basin.The findings indicate the development of three fundamental lithologies within the Lucaogou Formation:fine sandstone,siltstone,and mudstone.Siltstones exhibit the highest movable fluid saturation(MFS),followed by fine sandstones and mudstones sequentially.Fluid mobility is predominantly governed by the content of brittle minerals,the sorting coefficient(Sc),effective pore connectivity(EPC),and the fractal dimension(D_(2)).High content of brittle minerals favors the preservation of intergranular pores and the generation of microcracks,thus offering more occurrence space for movable fluids.A moderate Sc indicates the presence of larger connecting throats between pores,enhancing fluid mobility.Elevated EPC suggests more interconnected pore throat spaces,facilitating fluid movement.A higher D_(2)implies a more intricate effective pore structure,increasing the surface area of the rough pores and thereby impeding fluid mobility.Ultimately,this study developed a conceptual model that illustrates fluid distribution patterns across different reservoirs in the Lucaogou Formation,incorporating sedimentary contexts.This model also serves as a theoretical framework for assessing fluid mobility and devising engineering strategies for hydrocarbon exploitation in mixed fine-grained sedimentary rocks.