The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM)...The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM).The bacterial communities of free,attached,weakly-attached,and strongly-attached microbes in the later bioleaching stage were investigated.In AM group,the addition of lump sulphide ore resulted in the low leachate pH,high ferric iron concentration,and rapid microbial adsorption,which obtained the maximum copper extraction(60.1%)compared with LM(54.6%)and PM(43.9%)groups.The relative abundance of dominant genera and microbial communities of different microbiota underwent changes in three heap construction methods.The alpha-diversity indexes of attached,weakly-attached,and strongly-attached microbes were different,while no significant change was observed in free bacteria.The variation of whole bacterial community was significantly associated with solution pH,total iron,and ferric iron concentrations.Pearson correlation analysis and partial least square path model both indicated that attached bacteria made larger contribution to the copper extraction of tailings.展开更多
Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FG...Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FGDG)to immobilize heavy metals,and their compressive strength and heavy metal leaching toxicity were investigated.It was first determined that T4F5(TMT:FS=4:5)sample exhibited the highest compressive strength(7.83 MPa).T4F5 achieved 95%immobilization efficiency for As and Cr,and nearly 100%for Cu,Zn and Mn,showing good immobilization performance.A series of characterization analyses showed that heavy metal cations can balance the charge in the geopolymer and replace Al in the geopolymer structure to form covalent bonds.In addition,about 2%–20%of heavy metal Fe was immobilized in hydration products,heavy metal hydroxides and non-bridging Si–O and Al–O coordination with silica-aluminate matrices.AsO_(3)^(3−) was oxidized into AsO_(4)^(3−),which may form Ca–As or Fe–As precipitates.Cr_(2)O_(7)^(2−)was converted to CrO_(4)^(2−)under alkaline environment and then combined with OH−to form Cr(OH)3 precipitates.Mn^(2+)may react directly with dissolved silicate to form Mn_(2)SiO_(4) and also form Mn(OH)_(2) precipitates.The unstable Mn(OH)_(2) can be further oxidized to MnO_(2).The heavy metal cations were immobilized in the silicoaluminate lattice,while the anions tended to form insoluble precipitates.These results may benefit the industry and government for better handling of TMT,FS and solid wastes containing the abovementioned five heavy metals.展开更多
基金financial supports from the National Key R&D Program of China(No.2018YFC1801804)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2020QD120 and ZR2018LD001)Project of Introducing and Cultivating Young Talent in the Universities of Shandong Province,China(No.QC2019YY144)。
文摘The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM).The bacterial communities of free,attached,weakly-attached,and strongly-attached microbes in the later bioleaching stage were investigated.In AM group,the addition of lump sulphide ore resulted in the low leachate pH,high ferric iron concentration,and rapid microbial adsorption,which obtained the maximum copper extraction(60.1%)compared with LM(54.6%)and PM(43.9%)groups.The relative abundance of dominant genera and microbial communities of different microbiota underwent changes in three heap construction methods.The alpha-diversity indexes of attached,weakly-attached,and strongly-attached microbes were different,while no significant change was observed in free bacteria.The variation of whole bacterial community was significantly associated with solution pH,total iron,and ferric iron concentrations.Pearson correlation analysis and partial least square path model both indicated that attached bacteria made larger contribution to the copper extraction of tailings.
基金financially supported by the National Key R&D Program of China(No.2019YFC1904202)the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming(No.CNMRCUKF20)the Center for Analysis and Testing of Kunming University of Science and Technology(No.2020P20171130007).
文摘Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FGDG)to immobilize heavy metals,and their compressive strength and heavy metal leaching toxicity were investigated.It was first determined that T4F5(TMT:FS=4:5)sample exhibited the highest compressive strength(7.83 MPa).T4F5 achieved 95%immobilization efficiency for As and Cr,and nearly 100%for Cu,Zn and Mn,showing good immobilization performance.A series of characterization analyses showed that heavy metal cations can balance the charge in the geopolymer and replace Al in the geopolymer structure to form covalent bonds.In addition,about 2%–20%of heavy metal Fe was immobilized in hydration products,heavy metal hydroxides and non-bridging Si–O and Al–O coordination with silica-aluminate matrices.AsO_(3)^(3−) was oxidized into AsO_(4)^(3−),which may form Ca–As or Fe–As precipitates.Cr_(2)O_(7)^(2−)was converted to CrO_(4)^(2−)under alkaline environment and then combined with OH−to form Cr(OH)3 precipitates.Mn^(2+)may react directly with dissolved silicate to form Mn_(2)SiO_(4) and also form Mn(OH)_(2) precipitates.The unstable Mn(OH)_(2) can be further oxidized to MnO_(2).The heavy metal cations were immobilized in the silicoaluminate lattice,while the anions tended to form insoluble precipitates.These results may benefit the industry and government for better handling of TMT,FS and solid wastes containing the abovementioned five heavy metals.