期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fingerprint Liveness Detection from Different Fingerprint Materials Using Convolutional Neural Network and Principal Component Analysis 被引量:3
1
作者 Chengsheng Yuan Xinting Li +2 位作者 Q.M.Jonathan Wu Jin Li Xingming Sun 《Computers, Materials & Continua》 SCIE EI 2017年第4期357-372,共16页
Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints,which are made of common fingerprint materials,such as silicon,latex,etc.Thus,to protect our privacy,many ... Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints,which are made of common fingerprint materials,such as silicon,latex,etc.Thus,to protect our privacy,many fingerprint liveness detection methods are put forward to discriminate fake or true fingerprint.Current work on liveness detection for fingerprint images is focused on the construction of complex handcrafted features,but these methods normally destroy or lose spatial information between pixels.Different from existing methods,convolutional neural network(CNN)can generate high-level semantic representations by learning and concatenating low-level edge and shape features from a large amount of labeled data.Thus,CNN is explored to solve the above problem and discriminate true fingerprints from fake ones in this paper.To reduce the redundant information and extract the most distinct features,ROI and PCA operations are performed for learned features of convolutional layer or pooling layer.After that,the extracted features are fed into SVM classifier.Experimental results based on the LivDet(2013)and the LivDet(2011)datasets,which are captured by using different fingerprint materials,indicate that the classification performance of our proposed method is both efficient and convenient compared with the other previous methods. 展开更多
关键词 fingerprint liveness detection CNNS PCA SVM ROI LivDet 2013 LivDet 2011
下载PDF
Fingerprint Liveness Detection Based on Multi-Scale LPQ and PCA 被引量:13
2
作者 Chengsheng Yuan Xingming Sun Rui Lv 《China Communications》 SCIE CSCD 2016年第7期60-65,共6页
Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artifici... Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection. 展开更多
关键词 fingerprint liveness detection wavelet transform local phase quantity principal component analysis support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部