The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or ve...The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.展开更多
In this work, we introduce a method of fingerprint directional image partitioning based on GA. According to the fingerprint topology, A set of dynamic partition masks and a cost estimating function are designed to gui...In this work, we introduce a method of fingerprint directional image partitioning based on GA. According to the fingerprint topology, A set of dynamic partition masks and a cost estimating function are designed to guide the partitioning procedure. Finding best fitted mask application is converted to an functional optimizing problem, and we give out a GA solution to the problem. At last, we discuss the application of the proposed method in Fingerprint Classification.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compound...The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein.The use of virtual screening in pharmaceutical research is growing in popularity.During the early phases of medication research and development,it is crucial.Chemical compound searches are nowmore narrowly targeted.Because the databases containmore andmore ligands,thismethod needs to be quick and exact.Neural network fingerprints were created more effectively than the well-known Extended Connectivity Fingerprint(ECFP).Only the largest sub-graph is taken into consideration to learn the representation,despite the fact that the conventional graph network generates a better-encoded fingerprint.When using the average or maximum pooling layer,it also contains unrelated data.This article suggested the Graph Convolutional Attention Network(GCAN),a graph neural network with an attention mechanism,to address these problems.Additionally,it makes the nodes or sub-graphs that are used to create the molecular fingerprint more significant.The generated fingerprint is used to classify drugs using ensemble learning.As base classifiers,ensemble stacking is applied to Support Vector Machines(SVM),Random Forest,Nave Bayes,Decision Trees,AdaBoost,and Gradient Boosting.When compared to existing models,the proposed GCAN fingerprint with an ensemble model achieves relatively high accuracy,sensitivity,specificity,and area under the curve.Additionally,it is revealed that our ensemble learning with generated molecular fingerprint yields 91%accuracy,outperforming earlier approaches.展开更多
Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint r...Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.展开更多
The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was ...The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.展开更多
As the cyber security has attracted great attention in recent years,and with all kinds of tools’(such as Network Agent,VPN and so on)help,traditional methods of tracking users like log analysis and cookie have been n...As the cyber security has attracted great attention in recent years,and with all kinds of tools’(such as Network Agent,VPN and so on)help,traditional methods of tracking users like log analysis and cookie have been not that effective.Especially for some privacy sensitive users who changed their browser configuration frequently to hide themselves.The Browser Fingerprinting technology proposed by Electronic Frontier Foundation(EFF)gives a new approach of tracking users,and then our team designed an enhanced fingerprint dealing solution based on browser fingerprinting technology.Our enhanced solution plays well in recognizing the similar fingerprints,but it is not that efficient.Nowadays we improve the algorithm and propose a high-performance,efficient Browser Fingerprint Recognition Model.Our new model reforms the fingerprint items set by EFF and propose a Fingerprint Tracking Algorithm(FTA)to deal with collected data.It can associate users with some browser configuration changes in different periods of time quickly and precisely.Through testing with the experimental website built on the public network,we prove the high-performance and efficiency of our algorithm with a 20%time-consuming decrease than ever.展开更多
In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this ...In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy.展开更多
Fingerprint is a very popular and an ancient biometric technology to uniquely identify a person. In this paper, a fingerprint matcher is proposed which uses the global and local adaptive binarization and global minuti...Fingerprint is a very popular and an ancient biometric technology to uniquely identify a person. In this paper, a fingerprint matcher is proposed which uses the global and local adaptive binarization and global minutia features. The fingerprint data is collected using three different authentication devices based on optical sensors. The experimental results are compared with the National Institute of Standards and Technology (NIST) Bozorth algorithm and various authentication fingerprint sensors. The accuracy of the proposed algorithm has been improved significantly compared with that of the NIST Bozorth algorithm.展开更多
The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmissi...The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.展开更多
Fingerprint identification and recognition are considered popular technique in many security and law enforcement applications. The aim of this paper is to present a proposed authentication system based on fingerprint ...Fingerprint identification and recognition are considered popular technique in many security and law enforcement applications. The aim of this paper is to present a proposed authentication system based on fingerprint as biometric type, which is capable of recognizing persons with high level of confidence and minimum error rate. The designed system is implemented using Matlab 2015b and tested on a set of fingerprint images gathered from 90 different persons with 8 samples for each using Futronic’s FS80 USB2.0 Fingerprint Scanner and the ftrScanApiEx.exe program. An efficient image enhancement algorithm is used to improve the clarity (contrast) of the ridge structures in a fingerprint. After that core point and candidate core points are extracted for each Fingerprint image and feature vector have been extracted for each point using filterbank_based algorithm. Also, for the matching the KNN neural network was used. In addition, the matching results were calculated and compared to other papers using some performance evaluation factors. A threshold has been proposed and used to provide the rejection for the fingerprint images that does not belong to the database and the experimental results show that the KNN technique have a recognition rate equal to 93.9683% in a threshold equal to 70%.展开更多
A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental e...A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.展开更多
In the fingerprint matching-based wireless local area network(WLAN) indoor positioning system,Kalman filter(KF) is usually applied after fingerprint matching algorithms to make positioning results more accurate and co...In the fingerprint matching-based wireless local area network(WLAN) indoor positioning system,Kalman filter(KF) is usually applied after fingerprint matching algorithms to make positioning results more accurate and consecutive.But this method,like most methods in WLAN indoor positioning field,fails to consider and make use of users' moving speed information.In order to make the positioning results more accurate through using the users' moving speed information,a coordinate correction algorithm(CCA) is proposed in this paper.It predicts a reasonable range for positioning coordinates by using the moving speed information.If the real positioning coordinates are not in the predicted range,it means that the positioning coordinates are not reasonable to a moving user in indoor environment,so the proposed CCA is used to correct this kind of positioning coordinates.The simulation results prove that the positioning results by the CCA are more accurate than those calculated by the KF and the CCA is effective to improve the positioning performance.展开更多
Fingerprints are an extraordinary source for recognizable proof of people. Unique finger impression acknowledgment is one of the most seasoned types of biometric identification. However, getting a decent unique finger...Fingerprints are an extraordinary source for recognizable proof of people. Unique finger impression acknowledgment is one of the most seasoned types of biometric identification. However, getting a decent unique finger impression picture isn’t that simple. So we must process unique finger impression picture before coordinating. A crucial advance in measurements of fingerprint minutiae is to obtain minutiae from the finger impression pictures dependably. However, fingerprint images are occasionally of perfect quality. They might be debased and defiled because of varieties in skin and impression conditions. Along these lines, image enhancement strategies utilize other details extraction to acquire a more reliable estimation of minutiae areas. The primary objective of this research work is to introduce a superior and improved unique fingerprint image. We studied the elements identifying with getting elite component focuses detection algorithm, for example, picture quality, segmentation, picture upgrade and highlight recognition. Usually utilized features for enhancing unique finger impression picture quality are Fourier spectrum energy, Sobel filter energy, and local orientation. Precise segmentation of unique finger impression edges from a broad foundation is vital. For productive improvement and feature extraction algorithms, we zero the commotion in segmented features. As a pre-processing method, we need to perform comprising of field introduction, ridge frequency estimation, Sobel filtering, division. Then connect the resulting picture to a thinning algorithm and consequent minutiae extraction. After resultant extraction of these minutiae focuses, we will utilize the picture with focuses for coordinating or finding the offenders and also for other security issues. The procedure of image pre-processing and minutiae extraction is explored. The simulations are performed in the MATLAB environment to assess the execution of the implemented algorithm.展开更多
Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial express...Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial expressions and gestures. Among these various ways of expressing the emotion, the written method is a challenging task to extract the emotions, as the data is in the form of textual dat. Finding the different kinds of emotions is also a tedious task as it requires a lot of pre preparations of the textual data taken for the research. This research work is carried out to analyse and extract the emotions hidden in text data. The text data taken for the analysis is from the social media dataset. Using the raw text data directly from the social media will not serve the purpose. Therefore, the text data has to be pre-processed and then utilised for further processing. Pre-processing makes the text data more efficient and would infer valuable insights of the emotions hidden in it. The preprocessing steps also help to manage the text data for identifying the emotions conveyed in the text. This work proposes to deduct the emotions taken from the social media text data by applying the machine learning algorithm. Finally, the usefulness of the emotions is suggested for various stake holders, to find the attitude of individuals at that moment, the data is produced. .展开更多
文摘The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.
文摘In this work, we introduce a method of fingerprint directional image partitioning based on GA. According to the fingerprint topology, A set of dynamic partition masks and a cost estimating function are designed to guide the partitioning procedure. Finding best fitted mask application is converted to an functional optimizing problem, and we give out a GA solution to the problem. At last, we discuss the application of the proposed method in Fingerprint Classification.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
文摘The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein.The use of virtual screening in pharmaceutical research is growing in popularity.During the early phases of medication research and development,it is crucial.Chemical compound searches are nowmore narrowly targeted.Because the databases containmore andmore ligands,thismethod needs to be quick and exact.Neural network fingerprints were created more effectively than the well-known Extended Connectivity Fingerprint(ECFP).Only the largest sub-graph is taken into consideration to learn the representation,despite the fact that the conventional graph network generates a better-encoded fingerprint.When using the average or maximum pooling layer,it also contains unrelated data.This article suggested the Graph Convolutional Attention Network(GCAN),a graph neural network with an attention mechanism,to address these problems.Additionally,it makes the nodes or sub-graphs that are used to create the molecular fingerprint more significant.The generated fingerprint is used to classify drugs using ensemble learning.As base classifiers,ensemble stacking is applied to Support Vector Machines(SVM),Random Forest,Nave Bayes,Decision Trees,AdaBoost,and Gradient Boosting.When compared to existing models,the proposed GCAN fingerprint with an ensemble model achieves relatively high accuracy,sensitivity,specificity,and area under the curve.Additionally,it is revealed that our ensemble learning with generated molecular fingerprint yields 91%accuracy,outperforming earlier approaches.
基金supported in part by the National Science Foundation of China under Grants U22B2027,62172297,62102262,61902276 and 62272311,Tianjin Intelligent Manufacturing Special Fund Project under Grant 20211097the China Guangxi Science and Technology Plan Project(Guangxi Science and Technology Base and Talent Special Project)under Grant AD23026096(Application Number 2022AC20001)+1 种基金Hainan Provincial Natural Science Foundation of China under Grant 622RC616CCF-Nsfocus Kunpeng Fund Project under Grant CCF-NSFOCUS202207.
文摘Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.
文摘The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.
基金supported by the Beijing Municipal Natural Science Foundation(No.4172006)Humanity and Social Science Youth foundation of Ministry of Education of China under Grant No. 13YJCZH065+2 种基金General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No. km201410005012Open Research Fund of Beijing Key Laboratory of Trusted ComputingOpen Research Fund of Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education..
文摘As the cyber security has attracted great attention in recent years,and with all kinds of tools’(such as Network Agent,VPN and so on)help,traditional methods of tracking users like log analysis and cookie have been not that effective.Especially for some privacy sensitive users who changed their browser configuration frequently to hide themselves.The Browser Fingerprinting technology proposed by Electronic Frontier Foundation(EFF)gives a new approach of tracking users,and then our team designed an enhanced fingerprint dealing solution based on browser fingerprinting technology.Our enhanced solution plays well in recognizing the similar fingerprints,but it is not that efficient.Nowadays we improve the algorithm and propose a high-performance,efficient Browser Fingerprint Recognition Model.Our new model reforms the fingerprint items set by EFF and propose a Fingerprint Tracking Algorithm(FTA)to deal with collected data.It can associate users with some browser configuration changes in different periods of time quickly and precisely.Through testing with the experimental website built on the public network,we prove the high-performance and efficiency of our algorithm with a 20%time-consuming decrease than ever.
基金partially sponsored by National Key Project of China (No.2012ZX03001013-003)
文摘In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy.
文摘Fingerprint is a very popular and an ancient biometric technology to uniquely identify a person. In this paper, a fingerprint matcher is proposed which uses the global and local adaptive binarization and global minutia features. The fingerprint data is collected using three different authentication devices based on optical sensors. The experimental results are compared with the National Institute of Standards and Technology (NIST) Bozorth algorithm and various authentication fingerprint sensors. The accuracy of the proposed algorithm has been improved significantly compared with that of the NIST Bozorth algorithm.
基金Supported by the National Natural Science Foundation of China(No.61771186)Outstanding Youth Project of Heilongjiang Natural Science Foundation(No.YQ2020F012)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)。
文摘The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.
文摘Fingerprint identification and recognition are considered popular technique in many security and law enforcement applications. The aim of this paper is to present a proposed authentication system based on fingerprint as biometric type, which is capable of recognizing persons with high level of confidence and minimum error rate. The designed system is implemented using Matlab 2015b and tested on a set of fingerprint images gathered from 90 different persons with 8 samples for each using Futronic’s FS80 USB2.0 Fingerprint Scanner and the ftrScanApiEx.exe program. An efficient image enhancement algorithm is used to improve the clarity (contrast) of the ridge structures in a fingerprint. After that core point and candidate core points are extracted for each Fingerprint image and feature vector have been extracted for each point using filterbank_based algorithm. Also, for the matching the KNN neural network was used. In addition, the matching results were calculated and compared to other papers using some performance evaluation factors. A threshold has been proposed and used to provide the rejection for the fingerprint images that does not belong to the database and the experimental results show that the KNN technique have a recognition rate equal to 93.9683% in a threshold equal to 70%.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2014AA123103)
文摘A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.
基金Sponsored by the High Technology Research and Development Program of China (Grant No. 2008AA12Z305)
文摘In the fingerprint matching-based wireless local area network(WLAN) indoor positioning system,Kalman filter(KF) is usually applied after fingerprint matching algorithms to make positioning results more accurate and consecutive.But this method,like most methods in WLAN indoor positioning field,fails to consider and make use of users' moving speed information.In order to make the positioning results more accurate through using the users' moving speed information,a coordinate correction algorithm(CCA) is proposed in this paper.It predicts a reasonable range for positioning coordinates by using the moving speed information.If the real positioning coordinates are not in the predicted range,it means that the positioning coordinates are not reasonable to a moving user in indoor environment,so the proposed CCA is used to correct this kind of positioning coordinates.The simulation results prove that the positioning results by the CCA are more accurate than those calculated by the KF and the CCA is effective to improve the positioning performance.
文摘Fingerprints are an extraordinary source for recognizable proof of people. Unique finger impression acknowledgment is one of the most seasoned types of biometric identification. However, getting a decent unique finger impression picture isn’t that simple. So we must process unique finger impression picture before coordinating. A crucial advance in measurements of fingerprint minutiae is to obtain minutiae from the finger impression pictures dependably. However, fingerprint images are occasionally of perfect quality. They might be debased and defiled because of varieties in skin and impression conditions. Along these lines, image enhancement strategies utilize other details extraction to acquire a more reliable estimation of minutiae areas. The primary objective of this research work is to introduce a superior and improved unique fingerprint image. We studied the elements identifying with getting elite component focuses detection algorithm, for example, picture quality, segmentation, picture upgrade and highlight recognition. Usually utilized features for enhancing unique finger impression picture quality are Fourier spectrum energy, Sobel filter energy, and local orientation. Precise segmentation of unique finger impression edges from a broad foundation is vital. For productive improvement and feature extraction algorithms, we zero the commotion in segmented features. As a pre-processing method, we need to perform comprising of field introduction, ridge frequency estimation, Sobel filtering, division. Then connect the resulting picture to a thinning algorithm and consequent minutiae extraction. After resultant extraction of these minutiae focuses, we will utilize the picture with focuses for coordinating or finding the offenders and also for other security issues. The procedure of image pre-processing and minutiae extraction is explored. The simulations are performed in the MATLAB environment to assess the execution of the implemented algorithm.
文摘Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial expressions and gestures. Among these various ways of expressing the emotion, the written method is a challenging task to extract the emotions, as the data is in the form of textual dat. Finding the different kinds of emotions is also a tedious task as it requires a lot of pre preparations of the textual data taken for the research. This research work is carried out to analyse and extract the emotions hidden in text data. The text data taken for the analysis is from the social media dataset. Using the raw text data directly from the social media will not serve the purpose. Therefore, the text data has to be pre-processed and then utilised for further processing. Pre-processing makes the text data more efficient and would infer valuable insights of the emotions hidden in it. The preprocessing steps also help to manage the text data for identifying the emotions conveyed in the text. This work proposes to deduct the emotions taken from the social media text data by applying the machine learning algorithm. Finally, the usefulness of the emotions is suggested for various stake holders, to find the attitude of individuals at that moment, the data is produced. .