In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ...An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.展开更多
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t...Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model.展开更多
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ...Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.展开更多
With the finite difference method to calculate the temperature distribution in mass concrete structures, the solution precision will increase with a smaller step size, at the cost of computational time. In view of the...With the finite difference method to calculate the temperature distribution in mass concrete structures, the solution precision will increase with a smaller step size, at the cost of computational time. In view of the basic characteristics of the finite difference method, a simple yet powerful improvement is introduced. By multiplying the adiabatic temperature function with a correction factor, the precision of the solution can be assured without an increase in the computation time. In addition, the correction rules for three types of commonly used concrete hydration formulas are investigated.展开更多
A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic ...A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic finite difference method (FDM). In order to simplify the model, effect of some alloying elements on interdiffusivity can be negligible. Calculated results indicate the interdiffusivity in aluminide coating strongly depends on the composition and give the formulas used to calculate interdiffusivity at 850, 950 and 1050癈. The effect on interdiffusivity is briefly discussed.展开更多
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ...In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.展开更多
In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formul...In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formula,a one-to-one correspondence occurs between the physical and spurious states.Although these energies are exactly the same,the wave functions of the spurious states exhibit a much faster staggering than those of the physical states.Such spurious states can be eliminated when applying the finite difference method by introducing an extra Wilson term into the Hamiltonian.Furthermore,it was also found that the number of spurious states can be reduced if we improve the accuracy of the numerical differential formula.The Dirac equation is then solved in a momentum space in which there is no differential operator,and we found that the spurious states can be completely avoided in the momentum space,even without an extra Wilson term.展开更多
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and th...This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.展开更多
Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploi...Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.The upwind finite difference schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set.Some techniques,such as change of variables,calculus of variations, multiplicative commutation rule of difference operators,decomposition of high order difference operators and prior estimates,are adopted.The estimates in l~2 norm are derived to determine the error in the approximate solution.This method was already applied to the numerical simulation of migration-accumulation of oil resources.展开更多
Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational s...Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation.展开更多
A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and c...A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and compatible to other methods.展开更多
The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain th...The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid. A time-independent finite difference method, which is developed by Bang- fuh Chen, is used to solve the Euler equations for incompressible and inviscid fluids. The numerical results agree well with the analytic solutions and previously published results. The sloshing profiles of surge and heave motion with initial standing waves are presented. The results show very clear nonlinear and beating phenomena.展开更多
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金supported by the National Natural Science Foundation of China(Nos.11171193 and11371229)the Natural Science Foundation of Shandong Province(No.ZR2014AM033)the Science and Technology Development Project of Shandong Province(No.2012GGB01198)
文摘An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.
基金supported by the National Natural Science Foundation of China (No.50805056)New Century Excellent Talents in University (No.NCET-09-0396)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education (2009)
文摘Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model.
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602235 and 41772326)the Fundamental Research Funds for the Central Universities of China(Grant No.2652018091)。
文摘Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.
基金the Shanghai Excellent Young Professor Candidate Program (Grant No.04YQHB139)
文摘With the finite difference method to calculate the temperature distribution in mass concrete structures, the solution precision will increase with a smaller step size, at the cost of computational time. In view of the basic characteristics of the finite difference method, a simple yet powerful improvement is introduced. By multiplying the adiabatic temperature function with a correction factor, the precision of the solution can be assured without an increase in the computation time. In addition, the correction rules for three types of commonly used concrete hydration formulas are investigated.
文摘A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic finite difference method (FDM). In order to simplify the model, effect of some alloying elements on interdiffusivity can be negligible. Calculated results indicate the interdiffusivity in aluminide coating strongly depends on the composition and give the formulas used to calculate interdiffusivity at 850, 950 and 1050癈. The effect on interdiffusivity is briefly discussed.
基金the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program.Yang Yang is supported by the NSF Grant DMS-1818467.
文摘In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.
基金partly supported by the National Natural Science Foundation of China(No.11875070)the Natural Science Foundation of Anhui Province(No.1908085MA16)
文摘In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formula,a one-to-one correspondence occurs between the physical and spurious states.Although these energies are exactly the same,the wave functions of the spurious states exhibit a much faster staggering than those of the physical states.Such spurious states can be eliminated when applying the finite difference method by introducing an extra Wilson term into the Hamiltonian.Furthermore,it was also found that the number of spurious states can be reduced if we improve the accuracy of the numerical differential formula.The Dirac equation is then solved in a momentum space in which there is no differential operator,and we found that the spurious states can be completely avoided in the momentum space,even without an extra Wilson term.
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.
基金supported by the Major State BasicResearch Program of China(19990328)the National Tackling Key Problem Programs(20050200069)+4 种基金the National Natural Science Foundation of China(1077112410372052)the Doctorate Foundation of the Ministryof Education of China(20030422047)Shandong Provance Natural Science Foundation(2R2009AQ12)the Independent Innovation Foundation of Shandong University(2010TS031)
文摘Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.The upwind finite difference schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set.Some techniques,such as change of variables,calculus of variations, multiplicative commutation rule of difference operators,decomposition of high order difference operators and prior estimates,are adopted.The estimates in l~2 norm are derived to determine the error in the approximate solution.This method was already applied to the numerical simulation of migration-accumulation of oil resources.
基金supported by National Natural Science Foundation of China (Grant Nos. 50827102 and 50931004)National Basic Research Program of China (Grant No. 2010CB631202 and No. 2006CB605202)High Technology Research and Development Program of China (Grant No. 2007AA03Z552)
文摘Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation.
文摘A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and compatible to other methods.
文摘The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid. A time-independent finite difference method, which is developed by Bang- fuh Chen, is used to solve the Euler equations for incompressible and inviscid fluids. The numerical results agree well with the analytic solutions and previously published results. The sloshing profiles of surge and heave motion with initial standing waves are presented. The results show very clear nonlinear and beating phenomena.