期刊文献+
共找到365篇文章
< 1 2 19 >
每页显示 20 50 100
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
1
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
Improved finite difference method for pressure distribution of aerostatic bearing 被引量:4
2
作者 郑书飞 蒋书运 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期501-505,共5页
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero... An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast. 展开更多
关键词 aerostatic bearing: pressure distribution: Reynolds equation: finite difference method variable step size
下载PDF
Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions 被引量:5
3
作者 Boling GUO Qiang XU Zhe YIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第3期403-416,共14页
An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ... An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples. 展开更多
关键词 fractional percolation equation (FPE) Riemann-Liouville derivative frac-tional boundary condition finite difference method stability and convergence Toeplitzmatrix
下载PDF
Using finite difference method to simulate casting thermal stress 被引量:6
4
作者 Liao Dunming Zhang Bin +2 位作者 Zhou Jianxin Liu Ruixiang Chen Liliang 《China Foundry》 SCIE CAS 2011年第2期177-181,共5页
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t... Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model. 展开更多
关键词 thermal stress numerical simulation finite difference method (FDM) casting solidification process
下载PDF
Finite difference method for dynamic response analysis of anchorage system 被引量:5
5
作者 言志信 段建 +3 位作者 江平 刘子振 赵红亮 黄文贵 《Journal of Central South University》 SCIE EI CAS 2014年第3期1098-1106,共9页
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ... Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect. 展开更多
关键词 anchorage system dynamic response finite difference method attenuation characteristic
下载PDF
An explicit finite element-finite difference method for analyzing the effect of visco-elastic local topography on the earthquake motion 被引量:6
6
作者 李小军 廖振鹏 关慧敏 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期447-456,共10页
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite... An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability. 展开更多
关键词 VISCO-ELASTIC seismic response finite difference method explicit finite element artificial boundary
下载PDF
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
7
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
下载PDF
Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations 被引量:3
8
作者 罗志强 陈志敏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期931-944,共14页
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ... A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically. 展开更多
关键词 three-dimensional (3D) nonlinear potential flow equation predictor-corrector finite difference method staggered grid nested iterative method 3D sloshing
下载PDF
Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model 被引量:5
9
作者 戴前伟 冯德山 何继善 《Journal of Central South University of Technology》 EI 2005年第4期478-482,共5页
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c... The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model. 展开更多
关键词 ground penetrating radar finite difference time domain method forward simulation ideal frequency dispersion relationship
下载PDF
A fast explicit finite difference method for determination of wellhead injection pressure 被引量:2
10
作者 白冰 李小春 +2 位作者 刘明泽 石露 李琦 《Journal of Central South University》 SCIE EI CAS 2012年第11期3266-3272,共7页
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona... A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected. 展开更多
关键词 wellhead pressure injection pressure bottom-hole pressure fast explicit finite difference method
下载PDF
A geometrically and locally adaptive remeshing method for finite difference modeling of mining-induced surface subsidence 被引量:1
11
作者 Ziyu Zhang Gang Mei Nengxiong Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期219-231,共13页
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ... Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China. 展开更多
关键词 Mining-induced subsidence Numerical modeling finite difference method(FDM) Distorted mesh Adaptive remeshing
下载PDF
Solution precision of concrete temperature fields with finite difference method 被引量:1
12
作者 张宇鑫 黄达海 刘海成 《Journal of Shanghai University(English Edition)》 CAS 2008年第4期302-305,共4页
With the finite difference method to calculate the temperature distribution in mass concrete structures, the solution precision will increase with a smaller step size, at the cost of computational time. In view of the... With the finite difference method to calculate the temperature distribution in mass concrete structures, the solution precision will increase with a smaller step size, at the cost of computational time. In view of the basic characteristics of the finite difference method, a simple yet powerful improvement is introduced. By multiplying the adiabatic temperature function with a correction factor, the precision of the solution can be assured without an increase in the computation time. In addition, the correction rules for three types of commonly used concrete hydration formulas are investigated. 展开更多
关键词 concrete structure temperature field finite difference method HYDRATION
下载PDF
A Finite Difference Method for Determining Interdiffusivity of Aluminide Coating Formed on Superalloy 被引量:1
13
作者 Hua WEI, Xiaofeng SUN, Qi ZHENG, Guichen HOU, Hengrong GUAN and Zhuangqi HUState Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第5期595-598,共4页
A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic ... A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic finite difference method (FDM). In order to simplify the model, effect of some alloying elements on interdiffusivity can be negligible. Calculated results indicate the interdiffusivity in aluminide coating strongly depends on the composition and give the formulas used to calculate interdiffusivity at 850, 950 and 1050癈. The effect on interdiffusivity is briefly discussed. 展开更多
关键词 Interdiffusivity Aluminide coating finite difference method (FDM)
下载PDF
High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations 被引量:1
14
作者 Jie Du Yang Yang 《Communications on Applied Mathematics and Computation》 2023年第1期31-63,共33页
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ... In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme. 展开更多
关键词 Weighted essentially non-oscillatory scheme finite difference method Stiff source DETONATIONS Bound-preserving CONSERVATIVE
下载PDF
Solution to the Dirac equation using the finite difference method 被引量:1
15
作者 Ji-Yu Fang Shou-Wan Chen Tai-Hua Heng 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第2期20-27,共8页
In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formul... In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formula,a one-to-one correspondence occurs between the physical and spurious states.Although these energies are exactly the same,the wave functions of the spurious states exhibit a much faster staggering than those of the physical states.Such spurious states can be eliminated when applying the finite difference method by introducing an extra Wilson term into the Hamiltonian.Furthermore,it was also found that the number of spurious states can be reduced if we improve the accuracy of the numerical differential formula.The Dirac equation is then solved in a momentum space in which there is no differential operator,and we found that the spurious states can be completely avoided in the momentum space,even without an extra Wilson term. 展开更多
关键词 finite difference method Spurious states Momentum space
下载PDF
Finite difference streamline diffusion method using nonconforming space for incompressible time-dependent Navier-Stokes equations 被引量:1
16
作者 陈刚 冯民富 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1083-1096,共14页
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and th... This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient. 展开更多
关键词 Navier-Stokes equation high Reynolds number Ladyzhenskaya-Babugka- Brezzi (LBB) condition finite difference streamline diffusion method discrete Gronwall's inequality
下载PDF
THE UPWIND FINITE DIFFERENCE METHOD FOR MOVING BOUNDARY VALUE PROBLEM OF COUPLED SYSTEM
17
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期857-881,共25页
Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploi... Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.The upwind finite difference schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set.Some techniques,such as change of variables,calculus of variations, multiplicative commutation rule of difference operators,decomposition of high order difference operators and prior estimates,are adopted.The estimates in l~2 norm are derived to determine the error in the approximate solution.This method was already applied to the numerical simulation of migration-accumulation of oil resources. 展开更多
关键词 multilayer coupled system moving boundary values upwind finite difference method CONVERGENCE numerical simulation of energy sources
下载PDF
Techniques for improving computational speed in numerical simulation of casting thermal stress based on finite difference method
18
作者 Xue Xiang Wang Yueping 《China Foundry》 SCIE CAS 2013年第2期81-86,共6页
Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational s... Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation. 展开更多
关键词 computational speed numerical simulation thermal stress finite difference method material properties
下载PDF
AN ACCURATE SOLUTION OF THE POISSON EQUATION BY THE FINITE DIFFERENCE-CHEBYSHEV-TAU METHOD
19
作者 Hani I. Siyyam (Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid_Jordan) (Communicated by DAI Shi_qiang) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第8期935-939,共5页
A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and c... A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and compatible to other methods. 展开更多
关键词 Poisson equation Chebyshev polynomials Tau method finite difference method
下载PDF
Sloshing simulation of standing wave with time-independent finite difference method for Euler equations
20
作者 罗志强 陈志敏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第11期1475-1488,共14页
The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain th... The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid. A time-independent finite difference method, which is developed by Bang- fuh Chen, is used to solve the Euler equations for incompressible and inviscid fluids. The numerical results agree well with the analytic solutions and previously published results. The sloshing profiles of surge and heave motion with initial standing waves are presented. The results show very clear nonlinear and beating phenomena. 展开更多
关键词 Euler equation finite difference method numerical simulation Crank- Nicolson scheme
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部