This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor d...Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.展开更多
The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obt...The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obtain the wall pressure of the control volume. The 2-D inviscid incompressible steady duct flow is considered. The conservation equations in integral form are discretized for a control volume. The circulation along the control surface is expressed as a nonlinear function of the vertical velocity component at the inlet and is set equal to zero for the inviscid flow. The equation is solved by the Newton method, and the other aerodynamic properties can be obtained. The calculated results have been compared to the experiment and the agreement has been found fairly satisfactory.展开更多
This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses d...This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
In this paper, it is proved that there exists a finite controller such that the aymptoticbehavior of a slender space vehicle with the effect of aerodynamic power exponentially stablizes to atable state.
The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation o...The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.展开更多
The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability poss...The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.展开更多
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f...This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.展开更多
This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstruc...This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems.展开更多
A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is...A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.展开更多
This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (f...This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.展开更多
To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed ...To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method.展开更多
In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved e...In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.展开更多
In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control se...In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.展开更多
In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents ...In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.展开更多
In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordina...In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.展开更多
Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-conn...In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
文摘Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.
文摘The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obtain the wall pressure of the control volume. The 2-D inviscid incompressible steady duct flow is considered. The conservation equations in integral form are discretized for a control volume. The circulation along the control surface is expressed as a nonlinear function of the vertical velocity component at the inlet and is set equal to zero for the inviscid flow. The equation is solved by the Newton method, and the other aerodynamic properties can be obtained. The calculated results have been compared to the experiment and the agreement has been found fairly satisfactory.
文摘This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
文摘In this paper, it is proved that there exists a finite controller such that the aymptoticbehavior of a slender space vehicle with the effect of aerodynamic power exponentially stablizes to atable state.
基金supported by the National Natural Science Foundation of China(51679201)
文摘The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.
基金partially supported by the National Natural Science Foundation of China(62003097,62121004,62033003,62073019)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)+2 种基金the Key Area Research and Development Program of Guangdong Province(2021B0101410005)the Joint Funds of Guangdong Basic and Applied Basic Research Foundation(2019A1515110505)。
文摘The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.
基金partially supported by the National Natural Science Foundation of China(61622302,61673072,61573070)Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306014)+1 种基金the Department of Education of Guangdong Province(2016KTSCX030)the Department of Education of Liaoning Province(LZ2017001)
文摘This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.
基金Iranian Offshore OilCompany (IOOC) for financial support of this work
文摘This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems.
基金supported partially by National Natural Science Foundation of China(Project Nos.61903289 and 62073102)。
文摘A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.
文摘This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.
基金This work was supported in part by the Hunan Provincial Key Laboratory of Power Electronics Equipment and Grid under Grant 2018TP1001in part by the National Natural Science Foundation of China under Grant 61903382,51807206,61933011+1 种基金in part by the Major Project of Changzhutan Self-Dependent Innovation Demonstration Area under Grant 2018XK2002in part by the Natural Science Foundation of Hunan Province,China under Grant 2020JJ5722 and 2020JJ5753.
文摘To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method.
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.
文摘In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.
文摘In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.
基金Supported by the National Key Laboratory Foundation Project(9140C3403010903)
文摘In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Science and Technology Project of State Grid Corporation of China(Grant No.52272219000 V).
文摘In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.