The effect of slope angle for external overburden dump in response to average and heavy rainfall has been analyzed using a two dimensional finite difference method of transient water flow through unsaturated–saturate...The effect of slope angle for external overburden dump in response to average and heavy rainfall has been analyzed using a two dimensional finite difference method of transient water flow through unsaturated–saturated soil. The external dump stability is evaluated for five geomaterial types on the basis of globally accepted safety factor analysis technique, based on shear strength reduction approach using finite difference method. The results obtained from the finite difference method of analysis indicate that the external dump with more than 30° slope angle is greatly influenced by the rainfall under the studied conditions for geomaterial 3, 4 and 5, whereas dumps with geomaterial 1 and 2 remain safe. The analysis shows that major slope failure is out of preview for the studied rainfall conditions.展开更多
基金SERBDSTGovernment of India for funding this research work
文摘The effect of slope angle for external overburden dump in response to average and heavy rainfall has been analyzed using a two dimensional finite difference method of transient water flow through unsaturated–saturated soil. The external dump stability is evaluated for five geomaterial types on the basis of globally accepted safety factor analysis technique, based on shear strength reduction approach using finite difference method. The results obtained from the finite difference method of analysis indicate that the external dump with more than 30° slope angle is greatly influenced by the rainfall under the studied conditions for geomaterial 3, 4 and 5, whereas dumps with geomaterial 1 and 2 remain safe. The analysis shows that major slope failure is out of preview for the studied rainfall conditions.