In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of ...Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages.展开更多
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun...For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.展开更多
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ...In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.展开更多
In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbol...In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.展开更多
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct...The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.展开更多
In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic fi...In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution.展开更多
In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho...In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.展开更多
In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better c...In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects.展开更多
We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential...We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential equations and a nonlinear first-order ordinary differential equation. The scheme is analyzed and used to provide an existence-uniqueness result. Numerical simulations are performed in order to demonstrate the first-order rate of convergence. A sensitivity analysis was done in order to compare the effects of two drug types, those that increase the death rate of HPV-infected cells, and those that increase the death rate of the precancerous cell population. The model predicts that treatments that affect the precancerous cell population by directly increasing the corresponding death rate are far more effective than those that increase the death rate of HPV-infected cells.展开更多
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip veloci...This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip velocity, thermal radiation conditions, and heat flux. The investigation is conducted employing a robust numerical method that accounts for the impact of thermal radiation. This category of fluid is apt for characterizing the movement of blood within an industrial artery, where the flow can be regulated by a material designed to manage it. The resolution of the ensuing system of ordinary differential equations (ODEs), representing the described problem, is accomplished through the application of the finite difference method. The examination of flow and heat transfer characteristics, including aspects such as unsteadiness, radiation parameter, slip velocity, Casson parameter, and Prandtl number, is explored and visually presented through tables and graphs to illustrate their impact. On the stretching sheet, calculations, and descriptions of the local skin-friction coefficient and the local Nusselt number are conducted. In conclusion, the findings indicate that the proposed method serves as a straightforward and efficient tool for exploring the solutions of fluid models of this kind.展开更多
The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the ...The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.展开更多
Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurat...Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.展开更多
A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (F...A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified.展开更多
Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open...Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide.展开更多
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the...This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t...Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.展开更多
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
基金support via NSF grants NSF-19-04774,NSF-AST-2009776,NASA-2020-1241NASA grant 80NSSC22K0628.DSB+3 种基金HK acknowledge support from a Vajra award,VJR/2018/00129a travel grant from Notre Dame Internationalsupport via AFOSR grant FA9550-20-1-0055NSF grant DMS-2010107.
文摘Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages.
文摘For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.
基金the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program.Yang Yang is supported by the NSF Grant DMS-1818467.
文摘In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.
基金the NSFC grant 11872210 and the Science Challenge Project,No.TZ2016002the NSFC Grant 11926103 when he visited Tianyuan Mathematical Center in Southeast China,Xiamen 361005,Fujian,Chinathe NSFC Grant 12071392 and the Science Challenge Project,No.TZ2016002.
文摘In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.
文摘The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.
文摘In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution.
文摘In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.
基金Research of Linjin Li and Jingmei Qiu is supported by the NSF grant NSF-DMS-1818924the Air Force Office of Scientific Computing FA9550-18-1-0257 and the University of Delawarethe Italian Ministry of Instruction,University and Research(MIUR)to support this research with funds coming from the PRIN Project 2017,No.2017KKJP4X and ITN-ETN Horizon 2020 Project,Project Reference 642768.
文摘In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects.
文摘We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential equations and a nonlinear first-order ordinary differential equation. The scheme is analyzed and used to provide an existence-uniqueness result. Numerical simulations are performed in order to demonstrate the first-order rate of convergence. A sensitivity analysis was done in order to compare the effects of two drug types, those that increase the death rate of HPV-infected cells, and those that increase the death rate of the precancerous cell population. The model predicts that treatments that affect the precancerous cell population by directly increasing the corresponding death rate are far more effective than those that increase the death rate of HPV-infected cells.
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
文摘This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip velocity, thermal radiation conditions, and heat flux. The investigation is conducted employing a robust numerical method that accounts for the impact of thermal radiation. This category of fluid is apt for characterizing the movement of blood within an industrial artery, where the flow can be regulated by a material designed to manage it. The resolution of the ensuing system of ordinary differential equations (ODEs), representing the described problem, is accomplished through the application of the finite difference method. The examination of flow and heat transfer characteristics, including aspects such as unsteadiness, radiation parameter, slip velocity, Casson parameter, and Prandtl number, is explored and visually presented through tables and graphs to illustrate their impact. On the stretching sheet, calculations, and descriptions of the local skin-friction coefficient and the local Nusselt number are conducted. In conclusion, the findings indicate that the proposed method serves as a straightforward and efficient tool for exploring the solutions of fluid models of this kind.
基金Project supported partly by the Open Research Program in State Key Laboratory of Millimeter Waves of China(Grant No.K200802)partly by the National Natural Science Foundation of China(Grant No.60971122)
文摘The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.
基金sponsored by National Natural Science Foundation(40474041)National Symposium of 863(2006AA06Z206)+1 种基金National Symposium of 973(2007CB209605)CNPC Geophysical Key Laboratory of the China University of Petroleum (East China) Research Department
文摘Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.
文摘A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified.
基金supported by the National Natural Science Foundation of China(Grant No.61231003)
文摘Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide.
基金Project supported by Tianjin Research Program Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金This research was supported by the National Nature Science Foundation of China (No. 41074100) and the Program for NewCentury Excellent Talents in the University of the Ministry of Education of China (No. NCET- 10-0812).
文摘Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.