期刊文献+
共找到8,990篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
1
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
2
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
下载PDF
Efficient Finite Difference WENO Scheme for Hyperbolic Systems withNon-conservativeProducts
3
作者 Dinshaw S.Balsara Deepak Bhoriya +1 位作者 Chi-Wang Shu Harish Kumar 《Communications on Applied Mathematics and Computation》 EI 2024年第2期907-962,共56页
Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of ... Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages. 展开更多
关键词 Hyperbolic PDEs Numerical schemes Non-conservative products Stiff source terms finite difference WENO
下载PDF
A High Order Accurate Bound-Preserving Compact Finite Difference Scheme for Two-Dimensional Incompressible Flow
4
作者 Hao Li Xiangxiong Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期113-141,共29页
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun... For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field. 展开更多
关键词 finite difference MONOTONICITY Bound-preserving Discrete maximum principle Passive convection Incompressible flow Total variation bounded limiter
下载PDF
High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations 被引量:1
5
作者 Jie Du Yang Yang 《Communications on Applied Mathematics and Computation》 2023年第1期31-63,共33页
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ... In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme. 展开更多
关键词 Weighted essentially non-oscillatory scheme finite difference method Stiff source DETONATIONS Bound-preserving CONSERVATIVE
下载PDF
New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy 被引量:1
6
作者 Jun Zhu Jianxian Qiu 《Communications on Applied Mathematics and Computation》 2023年第1期64-96,共33页
In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbol... In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes. 展开更多
关键词 finite difference Mapped WENO scheme Mapping function Mapped nonlinear weight Unequal-sized stencil Extreme example
下载PDF
Full-Wave Analysis of Slotline Using Time-Domain Finite-Difference Method
7
作者 李媛 罗贺琴 言华 《Transactions of Tianjin University》 EI CAS 2002年第1期43-47,共5页
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct... The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector. 展开更多
关键词 time domain finite difference SLOTLINE modified dispersive boundary condition
下载PDF
AWeighted Average Finite Difference Scheme for the Numerical Solution of Stochastic Parabolic Partial Differential Equations
8
作者 Dumitru Baleanu Mehran Namjoo +1 位作者 Ali Mohebbian Amin Jajarmi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1147-1163,共17页
In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic fi... In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution. 展开更多
关键词 Itoequation stochastic process finite difference scheme stability and convergence CONSISTENCY
下载PDF
Finite-difference modeling of Maxwell viscoelastic media developed from perfectly matched layer
9
作者 Ruo-Long Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2759-2772,共14页
In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho... In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity. 展开更多
关键词 finite difference Viscoelastic model Nonsplitting perfectly matched layer
下载PDF
A High-Order Semi-Lagrangian Finite Difference Method for Nonlinear Vlasov and BGK Models
10
作者 Linjin Li Jingmei Qiu Giovanni Russo 《Communications on Applied Mathematics and Computation》 2023年第1期170-198,共29页
In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better c... In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects. 展开更多
关键词 SEMI-LAGRANGIAN WENO finite difference Vlasov-Poisson BGK equation Linear stability
下载PDF
Well-Posedness and a Finite Difference Approximation for a Mathematical Model of HPV-Induced Cervical Cancer
11
作者 Baoling Ma Jeremy J. Thibodeaux 《Applied Mathematics》 2023年第3期151-172,共22页
We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential... We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential equations and a nonlinear first-order ordinary differential equation. The scheme is analyzed and used to provide an existence-uniqueness result. Numerical simulations are performed in order to demonstrate the first-order rate of convergence. A sensitivity analysis was done in order to compare the effects of two drug types, those that increase the death rate of HPV-infected cells, and those that increase the death rate of the precancerous cell population. The model predicts that treatments that affect the precancerous cell population by directly increasing the corresponding death rate are far more effective than those that increase the death rate of HPV-infected cells. 展开更多
关键词 Age Structured Cervical Cancer finite difference Human Papillomavirus Mathematical Model
下载PDF
Efficient Finite Difference/Spectral Method for the Time Fractional Ito Equation Using Fast Fourier Transform Technic
12
作者 Dakang Cen Zhibo Wang Seakweng Vong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1591-1600,共10页
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c... A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples. 展开更多
关键词 Time fractional Ito equation finite difference method Spectral method STABILITY
下载PDF
Numerical Study by Imposing the Finite Difference Method for Unsteady Casson Fluid Flow with Heat Flux
13
作者 Ali H. Tedjani 《Journal of Applied Mathematics and Physics》 2023年第12期3826-3839,共14页
This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip veloci... This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip velocity, thermal radiation conditions, and heat flux. The investigation is conducted employing a robust numerical method that accounts for the impact of thermal radiation. This category of fluid is apt for characterizing the movement of blood within an industrial artery, where the flow can be regulated by a material designed to manage it. The resolution of the ensuing system of ordinary differential equations (ODEs), representing the described problem, is accomplished through the application of the finite difference method. The examination of flow and heat transfer characteristics, including aspects such as unsteadiness, radiation parameter, slip velocity, Casson parameter, and Prandtl number, is explored and visually presented through tables and graphs to illustrate their impact. On the stretching sheet, calculations, and descriptions of the local skin-friction coefficient and the local Nusselt number are conducted. In conclusion, the findings indicate that the proposed method serves as a straightforward and efficient tool for exploring the solutions of fluid models of this kind. 展开更多
关键词 Casson Model Unsteady Stretching Sheet Variable Heat Flux MHD Slip Impacts Thermal Radiation finite difference Method
下载PDF
Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice 被引量:1
14
作者 王身云 刘少斌 Le-Wei Joshua Li 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期374-378,共5页
The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the ... The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed. 展开更多
关键词 shift operator finite difference time domain method SUPERCONDUCTOR superconductor- dielectric superlattice high-pass filter
下载PDF
Post-stack reverse-time migration using a finite difference method based on triangular grids 被引量:4
15
作者 郭书娟 李振春 +3 位作者 孙小东 叶月明 滕厚华 李芳 《Applied Geophysics》 SCIE CSCD 2008年第2期115-120,共6页
Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurat... Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application. 展开更多
关键词 reverse-time migration structural complexity triangular grids finite difference
下载PDF
A Novel Absorbing Boundary Condition for the Frequency-Dependent Finite-Difference Time-Domain Method
16
作者 WANG Tong, ZHANG Wen jun, GE Ren wei, LIU Wei liang School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第2期111-115,共5页
A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (F... A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified. 展开更多
关键词 dispersive media FDTD(finite different time domain) absorbing boundary condition digital filter
下载PDF
Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method 被引量:1
17
作者 王玥 王建国 陈再高 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期128-136,共9页
Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open... Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. 展开更多
关键词 enlarged cell technique CONFORMAL finite-difference time-domain convolutional perfectlymatched layer
下载PDF
Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method 被引量:1
18
作者 马秀荣 徐林 +1 位作者 常世元 张双根 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期190-197,共8页
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the... This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered. 展开更多
关键词 three-pulse photon echo Maxwell-Bloch equations finite-difference time-domain method
下载PDF
Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 被引量:1
19
作者 窦虎 马红梅 孙玉宝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期117-121,共5页
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ... The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. 展开更多
关键词 finite-difference time-domain method blue phase liquid crystal display in-plane switching convergence effect
下载PDF
Viscoacoustic prestack reverse time migration based onthe optimal time-space domain high-order finite-difference method 被引量:7
20
作者 赵岩 刘洋 任志明 《Applied Geophysics》 SCIE CSCD 2014年第1期50-62,116,共14页
Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t... Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution. 展开更多
关键词 REVERSE time migration Viscoacoustic Optimization Adaptive Time-spacedomain finite-difference
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部