期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
On the Conservative Finite Difference Scheme for the Generalized Novikov Equation
1
作者 Wenxia Chen Qianqian Zhu Ping Yang 《Journal of Applied Mathematics and Physics》 2017年第9期1776-1790,共15页
In this paper, we investigate a numerical method for the generalized Novikov equation. We propose a conservative finite difference scheme and use Brouwer fixed point theorem to obtain the existence of the solution of ... In this paper, we investigate a numerical method for the generalized Novikov equation. We propose a conservative finite difference scheme and use Brouwer fixed point theorem to obtain the existence of the solution of the corresponding difference equation. We also prove the convergence and stability of the solution by using the discrete energy method. Moreover, we obtain the truncation error of the difference scheme which is . 展开更多
关键词 Generalized NOVIKOV EQUATION finite DIFFERENCE scheme CONSERVATION Law Stability Convergence
下载PDF
LARGE TIME STEP GENERALIZATION OF RANDOM CHOICE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC CONSERVATION LAWS
2
作者 Wang Jinghua Inst. of Syst. Sci., Academia Sinica, Beijing, China 《Acta Mathematica Scientia》 SCIE CSCD 1989年第1期33-42,共10页
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ... A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition. 展开更多
关键词 LARGE TIME STEP GENERALIZATION OF RANDOM CHOICE finite DIFFERENCE scheme for HYPERBOLIC CONSERVATION laws STEP
下载PDF
High-order maximum-principle-preserving and positivity-preserving weighted compact nonlinear schemes for hyperbolic conservation laws 被引量:3
3
作者 Lingyan TANG Songhe SONG Hong ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期173-192,共20页
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws... In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes. 展开更多
关键词 hyperbolic conservation law maximum-principle-preserving(MPP) positivity-preserving(PP) weighted compact nonlinear scheme(WCNS) finite difference scheme
下载PDF
An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations 被引量:2
4
作者 房克照 邹志利 王艳 《China Ocean Engineering》 SCIE EI 2005年第3期349-364,共16页
The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and... The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe' s flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust. 展开更多
关键词 finite volume method nonlinear shallow water equation monotonic upstream schemes for conservation laws RUN-UP moving shoreline boundary
下载PDF
RELAXATION SOLVERS FOR IDEAL MHD EQUATIONS-A REVIEW 被引量:1
5
作者 Christian Klingenberg Knut Waagan 《Acta Mathematica Scientia》 SCIE CSCD 2010年第2期621-632,共12页
We have developed approximate Riemann solvers for ideal MHD equations based on a relaxation approach in [4], [5]. These lead to entropy consistent solutions with good properties like guaranteed positive density. We de... We have developed approximate Riemann solvers for ideal MHD equations based on a relaxation approach in [4], [5]. These lead to entropy consistent solutions with good properties like guaranteed positive density. We describe the extension to higher order and multiple space dimensions. Finally we show our implementation of all this into the astrophysics code FLASH. 展开更多
关键词 conservation laws ideal magnetohydrodynamics finite volume schemes en-tropy stable schemes positive schemes
下载PDF
Hyperbolic Conservation Laws on Manifolds.An Error Estimate for Finite Volume Schemes
6
作者 Philippe G.LeFLOCH Baver OKUTMUSTUR Wladimir NEVES 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第7期1041-1066,共26页
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L1-error estimate for a class of finite volume schemes allowing for the approxima... Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L1-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L1 norm is of order h1/4 at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theory which was originally developed in the Euclidian setting. We extend the arguments to curved manifolds, by taking into account the effects to the geometry and overcoming several new technical difficulties. 展开更多
关键词 Hyperbolic conservation law entropy solution finite volume scheme error estimate discrete entropy inequality convergence rate
原文传递
含新型间断探测器的混合WCNS格式在间断无粘可压流的应用
7
作者 张昊 邓小刚 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第1期1-11,共11页
为了让高精度数值格式在含间断和小尺度涡等复杂结构的超声速无粘可压缩流动情况下,仍能鲁棒地捕捉激波并快速得到流场高保真的模拟结果,研究了以子模板导数组合为基础的光滑度量算法,构造了精度与鲁棒性兼顾的新型间断探测器,使间断识... 为了让高精度数值格式在含间断和小尺度涡等复杂结构的超声速无粘可压缩流动情况下,仍能鲁棒地捕捉激波并快速得到流场高保真的模拟结果,研究了以子模板导数组合为基础的光滑度量算法,构造了精度与鲁棒性兼顾的新型间断探测器,使间断识别对小尺度涡也具有高分辨率;研究了混合加权紧致非线性格式(weighted compact nonlinear scheme, WCNS)方法,对流场中的光滑与间断区域分别使用线性与非线性加权格式求解,从而克服单一非线性格式在光滑区分辨率难以达到设计精度的问题。数值实验表明,使用新型间断探测器的混合WCNS格式对一维、二维Euler方程模拟结果良好,并且相比于在全流场使用局部特征分解的原始WCNS方法有计算效率的提高。 展开更多
关键词 激波捕捉 问题单元识别 有限差分法 高精度格式 双曲守恒律 无粘流动
下载PDF
HIGH RESOLUTION SCHEMES FOR CONSERVATION LAWS AND CONVECTION-DIFFUSION EQUATIONS WITH VARYING TIME AND SPACE GRIDS 被引量:1
8
作者 Hua-zhong Tang Gerald Warnecke 《Journal of Computational Mathematics》 SCIE EI CSCD 2006年第2期121-140,共20页
This paper presents a class of high resolution local time step schemes for nonlinear hyperbolic conservation laws and the closely related convection-diffusion equations, by projecting the solution increments of the un... This paper presents a class of high resolution local time step schemes for nonlinear hyperbolic conservation laws and the closely related convection-diffusion equations, by projecting the solution increments of the underlying partial differential equations (PDE) at each local time step. The main advantages are that they are of good consistency, and it is convenient to implement them. The schemes are L^∞ stable, satisfy a cell entropy inequality, and may be extended to the initial boundary value problem of general unsteady PDEs with higher-order spatial derivatives. The high resolution schemes are given by combining the reconstruction technique with a second order TVD Runge-Kutta scheme or a Lax-Wendroff type method, respectively. The schemes are used to solve a linear convection-diffusion equation, the nonlinear inviscid Burgers' equation, the one- and two-dimensional compressible Euler equations, and the two-dimensional incompressible Navier-Stokes equations. The numerical results show that the schemes are of higher-order accuracy, and efficient in saving computational cost, especially, for the case of combining the present schemes with the adaptive mesh method [15]. The correct locations of the slow moving or stronger discontinuities are also obtained, although the schemes are slightly nonconservative. 展开更多
关键词 Hyperbolic conservation laws Degenerate diffusion High resolution scheme finite volume method Local time discretization.
原文传递
A New Approach of High OrderWell-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms 被引量:2
9
作者 Yulong Xing Chi-Wang Shu 《Communications in Computational Physics》 SCIE 2006年第1期100-134,共35页
Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a cl... Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms.In this paper,we present a different approach to the same purpose:designing high order well-balanced finite volume weighted essentially non-oscillatory(WENO)schemes and RungeKutta discontinuous Galerkin(RKDG)finite element methods.We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly,if a small modification on either the initial condition or the flux is provided.The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method.The same idea can be applied to the finite volume WENO schemes.We will first describe the algorithms and prove the well balanced property for the shallow water equations,and then show that the result can be generalized to a class of other balance laws.We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions,the non-oscillatory property for general solutions with discontinuities,and the genuine high order accuracy in smooth regions. 展开更多
关键词 Hyperbolic balance laws WENO finite volume scheme discontinuous Galerkin method high order accuracy source term conservation laws shallow water equation elastic wave equation chemosensitive movement nozzle flow two phase flow
原文传递
Trigonometric WENO Schemes for Hyperbolic Conservation Laws and Highly Oscillatory Problems
10
作者 Jun Zhu Jianxian Qiu 《Communications in Computational Physics》 SCIE 2010年第10期1242-1263,共22页
In this paper,we use trigonometric polynomial reconstruction,instead of algebraic polynomial reconstruction,as building blocks for the weighted essentially non-oscillatory(WENO)finite difference schemes to solve hyper... In this paper,we use trigonometric polynomial reconstruction,instead of algebraic polynomial reconstruction,as building blocks for the weighted essentially non-oscillatory(WENO)finite difference schemes to solve hyperbolic conservation laws and highly oscillatory problems.The goal is to obtain robust and high order accurate solutions in smooth regions,and sharp and non-oscillatory shock transitions.Numerical results are provided to illustrate the behavior of the proposed schemes. 展开更多
关键词 TWENO scheme hyperbolic conservation laws highly oscillatory problem finite difference scheme
原文传递
Combinations of nonstandard finite difference schemes and composition methods with complex time steps for population models
11
作者 Cuicui Liao Xiaohua Ding Jiuzhen Liang 《International Journal of Biomathematics》 2016年第4期1-14,共14页
We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive... We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive numerical solutions that satisfy the conservation law, which is a key property for biological population models. The accuracy is improved by using the composition methods with complex time steps. Numerical tests on the plankton nutrient model and whooping cough model are presented to show the efficiency and advantage of the proposed numerical method. 展开更多
关键词 Nonstandard finite difference schemes composition methods with complextime steps population models positive numerical solutions conservation laws.
原文传递
双曲型守恒律的高阶、高分辨有限体积法 被引量:23
12
作者 李荫藩 宋松和 周铁 《力学进展》 EI CSCD 北大核心 2001年第2期245-263,共19页
有限体积法是一种离散积分形式守恒律的数值方法.它可以吸收有限元法和有限差分法的一些重要思想与技巧.由于它可方便地利用多种类型的网格(结构网格和非结构网格),从而非常适用于处理复杂计算区域,目前已成为一种在计算流体力学... 有限体积法是一种离散积分形式守恒律的数值方法.它可以吸收有限元法和有限差分法的一些重要思想与技巧.由于它可方便地利用多种类型的网格(结构网格和非结构网格),从而非常适用于处理复杂计算区域,目前已成为一种在计算流体力学中十分重要的方法.本文将针对二维双曲守衡律,对高精度、高分辨的有限体积法及其近年来的进展做一简要介绍. 展开更多
关键词 双曲守恒律 有限体积法 结构网络 无结构网格 高精度 高分辨格式 计算流体力学
下载PDF
一维浅水波方程的高分辨率熵相容算法
13
作者 郑素佩 封建湖 王文杰 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第12期1708-1712,共5页
针对一维浅水波方程的数值求解问题,构造了三阶、四阶高分辨率熵相容算法:数值通量函数是满足总熵衰变特点的熵相容通量,时间方向是具有强稳定特点的优化三阶Runge-Kutta算法,空间方向分别采用三阶、四阶CWENO(Central Weighted Essenti... 针对一维浅水波方程的数值求解问题,构造了三阶、四阶高分辨率熵相容算法:数值通量函数是满足总熵衰变特点的熵相容通量,时间方向是具有强稳定特点的优化三阶Runge-Kutta算法,空间方向分别采用三阶、四阶CWENO(Central Weighted Essentially Non-oscillatory)重构法进行了离散,通过若干算例研究了新算法的性能.结果表明:新算法能够准确捕捉激波、稀疏波,计算结果与准确解符合很好,且在强稀疏波算例中新算法能够有效避免膨胀激波现象的产生.新算法是熵相容的,易于编程实现,且计算结果可靠,便于向高维推广. 展开更多
关键词 浅水波 有限体积法 熵相容 熵稳定 CWENO重构 优化Runge-Kutta方法 膨胀激波现象 双曲守恒律
下载PDF
包含夸克碎块效应的相对论性流体力学方程组的数值解法 被引量:1
14
作者 王立联 李盘林 许梦杰 《计算物理》 CSCD 北大核心 1999年第1期94-98,共5页
采用守恒型差分方法求解带源项的相对论性流体力学方程组,给出了差分离散化的详细步骤,同时在计算过程中计入了QGP相变的影响,得到反映物理现象的若干图象。
关键词 相对论性 流体力学方程组 夸克碎块效性
下载PDF
A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes 被引量:7
15
作者 ZHU Jun QIU JianXian 《Science China Mathematics》 SCIE 2008年第8期1549-1560,共12页
In this paper,we developed a class of the fourth order accurate finite volume Hermite weighted essentially non-oscillatory(HWENO)schemes based on the work(Computers&Fluids,34:642-663(2005))by Qiu and Shu,with Tota... In this paper,we developed a class of the fourth order accurate finite volume Hermite weighted essentially non-oscillatory(HWENO)schemes based on the work(Computers&Fluids,34:642-663(2005))by Qiu and Shu,with Total Variation Diminishing Runge-Kutta time discretization method for the two-dimensional hyperbolic conservation laws.The key idea of HWENO is to evolve both with the solution and its derivative,which allows for using Hermite interpolation in the reconstruction phase,resulting in a more compact stencil at the expense of the additional work.The main difference between this work and the formal one is the procedure to reconstruct the derivative terms.Comparing with the original HWENO schemes of Qiu and Shu,one major advantage of new HWENOschemes is its robust in computation of problem with strong shocks.Extensive numerical experiments are performed to illustrate the capability of the method. 展开更多
关键词 finite volume HWENO scheme conservation laws Hermite polynomial TVD Runge-Kutta time discretization method 65M06 65M99 35L65
原文传递
长短波方程的两个守恒型紧致有限差分格式 被引量:1
16
作者 蒋佳平 王廷春 《工程数学学报》 CSCD 北大核心 2020年第1期43-55,共13页
本文对一类耦合非线性长短波方程组进行了数值研究,提出了两个四阶紧致有限差分格式,并证明新格式在离散意义下保持原问题的两个守恒性质,即总质量守恒和总能量守恒.数值实验表明本文格式在时间和空间方向分别具有二阶和四阶精度,具有... 本文对一类耦合非线性长短波方程组进行了数值研究,提出了两个四阶紧致有限差分格式,并证明新格式在离散意义下保持原问题的两个守恒性质,即总质量守恒和总能量守恒.数值实验表明本文格式在时间和空间方向分别具有二阶和四阶精度,具有良好的稳定性且在离散意义下很好地保持总质量和总能量守恒. 展开更多
关键词 长短波方程 紧致有限差分格式 质量守恒 能量守恒
下载PDF
五次非线性Schr?dinger方程的一个新型守恒紧致差分格式 被引量:1
17
作者 薛翔 王廷春 《数学杂志》 2019年第4期555-565,共11页
本文研究了带五次项的非线性Schrodinger方程初边值问题.利用有限差分法构造了一个四阶紧致差分格式,证明格式在离散意义下保持原问题的两个守恒性质,即质量守恒和能量守恒.引入“抬升”技巧,运用标准的能量方法和数学归纳法建立了误差... 本文研究了带五次项的非线性Schrodinger方程初边值问题.利用有限差分法构造了一个四阶紧致差分格式,证明格式在离散意义下保持原问题的两个守恒性质,即质量守恒和能量守恒.引入“抬升”技巧,运用标准的能量方法和数学归纳法建立了误差的最优估计,证明数值解在空间和时间两个方向分别具有四阶和二阶精度.数值实验对理论结果进行了验证,并与已有结果进行了对比,结果表明本文格式在保持精度相当的前提下具有更高的计算效率. 展开更多
关键词 五次非线性Schrodinger方程 紧致有限差分格式 离散守恒律 最优误差估计 计算效率
下载PDF
A Cartesian Embedded Boundary Method for Hyperbolic Conservation Laws 被引量:1
18
作者 Bjorn Sjogreen N.Anders Petersson 《Communications in Computational Physics》 SCIE 2007年第6期1199-1219,共21页
We develop an embedded boundary finite difference technique for solving the compressible two-or three-dimensional Euler equations in complex geometries on a Cartesian grid.The method is second order accurate with an e... We develop an embedded boundary finite difference technique for solving the compressible two-or three-dimensional Euler equations in complex geometries on a Cartesian grid.The method is second order accurate with an explicit time step determined by the grid size away from the boundary.Slope limiters are used on the embedded boundary to avoid non-physical oscillations near shock waves.We show computed examples of supersonic flow past a cylinder and compare with results computed on a body fitted grid.Furthermore,we discuss the implementation of the method for thin geometries,and show computed examples of transonic flow past an airfoil. 展开更多
关键词 Embedded boundary hyperbolic conservation law finite difference scheme shock wave.
原文传递
带浸入边界法的新型五阶WENO格式求解双曲守恒律方程
19
作者 王丹 朱君 《青岛大学学报(自然科学版)》 CAS 2019年第2期8-14,共7页
采用一种带浸入边界法的新型五阶有限差分WENO(weighted essentially non-oscillatory)格式在笛卡尔网格上求解含有复杂物面的双曲型守恒律方程。这种结构网格上的新型WENO格式因对计算网格质量依赖性较高,故一般不能直接应用于上述问... 采用一种带浸入边界法的新型五阶有限差分WENO(weighted essentially non-oscillatory)格式在笛卡尔网格上求解含有复杂物面的双曲型守恒律方程。这种结构网格上的新型WENO格式因对计算网格质量依赖性较高,故一般不能直接应用于上述问题的数值模拟。而浸入边界法是一种能较好处理复杂物面边界的方法。将两种方法结合起来,可在笛卡尔网格上数值解决跨音速复杂流动问题,并用四个经典算例验证新型五阶WENO方法的有效性。 展开更多
关键词 有限差分WENO格式 笛卡尔网格 浸入边界法 可压缩绕流问题 双曲守恒律方程
下载PDF
一维Zakharov-Rubenchik方程的有效紧致差分格式 被引量:1
20
作者 胡云霞 李宏伟 《山东师范大学学报(自然科学版)》 CAS 2020年第2期149-157,共9页
偏微分方程的有限差分法是科学计算中的一种有效方法,采用经典的一阶和二阶有限差分格式对方程进行数值求解,要想得到较高精度的近似解是不容易的,一种合理的方法是设计高阶紧致差分格式.为了研究一维Zakharov-Rubenchik方程的有效紧致... 偏微分方程的有限差分法是科学计算中的一种有效方法,采用经典的一阶和二阶有限差分格式对方程进行数值求解,要想得到较高精度的近似解是不容易的,一种合理的方法是设计高阶紧致差分格式.为了研究一维Zakharov-Rubenchik方程的有效紧致差分格式及其数值计算.针对一般形式的Zakharov-Rubenchik方程,提出了一种半隐式紧致有限差分格式,该格式克服了传统差分格式效率低、精确度不足的缺点,并在离散层次上保持了质量和能量的守恒性.最后,通过数值算例验证了该格式的精确程度及守恒性,并对几种不同差分格式的误差和计算耗时进行了比较,数值结果表明了半隐式紧致差分格式的高阶收敛性及有效性. 展开更多
关键词 Zakharov-Rubenchik方程 紧致有限差分格式 离散守恒定律
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部