期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Two-way coupled analysis of lithium diffusion and diffusion induced finite elastoplastic bending of bilayer electrodes in lithium-ion batteries 被引量:2
1
作者 Jun YIN Xianjun SHAO +2 位作者 Bo LU Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第11期1567-1586,共20页
A fully coupling model for the diffusion induced finite elastoplastic bending of bilayer electrodes in lithium-ion batteries is proposed. The effect of the mechanical stress on the lithium diffusion is accounted for b... A fully coupling model for the diffusion induced finite elastoplastic bending of bilayer electrodes in lithium-ion batteries is proposed. The effect of the mechanical stress on the lithium diffusion is accounted for by the mechanical part of the chemical potential derived from the Gibbs free energy along with the logarithmic stress and strain. Eight dimensionless parameters, governing the stress-assisted diffusion and the diffusion induced elastoplastic bending, are identified. It is found that the finite plasticity starting from the interface of the bilayer increases the chemical potential gradient and thereby facilitates the lithium diffusion. The full plastic flow makes the abnormal lithium concentration distribution possible, i.e., the concentration at the lithium inlet can be lower than the concentration at the interface(downstream). The increase in the thickness of the active layer during charging is much larger than the eigen-stretch due to lithiation, and this excess thickening is found to be caused by the lithiation induced plastic yield. 展开更多
关键词 lithium ion battery bilayer electrode coupled diffusion finite elastoplastic bending
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部