期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Simulation study on ultrasonic tomography for grouted reinforced concrete by finite element
1
作者 朱自强 喻波 +2 位作者 李亚楠 肖嘉莹 周勇 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2791-2799,共9页
A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,... A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,a hybrid regularizations-based iterative Newton method is implemented to provide stable inverse solutions.Furthermore,a dual mesh scheme and an adjoint method are adopted to reduce the computation cost and improve the efficiency of reconstruction.Simultaneous reconstruction of both acoustic velocity and attenuation coefficient for a reinforced concrete model is achieved with multiple frequency data.The algorithm is evaluated with numerical simulation under various practical scenarios including varied transmission/receiving modes,different noise levels,different source/detector numbers,and different contrast levels between the heterogeneity and background region.Results obtained suggest that the algorithm is insensitive to noise,and the reconstructions are quantitatively accurate in terms of the location,size and acoustic properties of the target over a range of contrast levels. 展开更多
关键词 ultrasound computed tomography nondestructive testing concrete exact field finite element method
下载PDF
A new computational approach for modeling diffusion tractography in the brain
2
作者 Harsha T.Garimella Reuben H.Kraft 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期23-26,共4页
Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics o... Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics operating in the brain.In this review paper,we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre.The embedded element method is a mesh superposition technique used within finite element analysis.This method allows for the incorporation of axonal fiber tracts to be explicitly represented.Here,we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury.We explore the potential application of the embedded element method in areas of electrophysiology,neurodegeneration,neuropharmacology and mechanobiology.We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies. 展开更多
关键词 embedded elements finite element analysis computational biomechanics explicit axonal fiber tracts neural regeneration diffusion tractography
下载PDF
AN IMPROVED EFFICIENT SEMI-IMPLICIT FINITE ELEMENT SCHEME FOR TWO-DIMENSIONAL TIDAL FLOW COMPUTATIONS
3
作者 Chen Chu-ping, Department of Applied Mechanics and Engineering, Zhongshan University, Guangzhou 510275, P.R. ChinaY.S. Li, Department of Civil & Structural Engineering, Hong Kong Polytechnic, Hong Kong 《Journal of Hydrodynamics》 SCIE EI CSCD 1991年第1期56-65,共10页
In a recent paper, an efficient semi-implicit finite element scheme for 2-dimensional tidal flow computations is proposed. In that scheme, each term of the governing equations, rather than each dependent variable, is ... In a recent paper, an efficient semi-implicit finite element scheme for 2-dimensional tidal flow computations is proposed. In that scheme, each term of the governing equations, rather than each dependent variable, is ex- panded in terms of the unknown nodal values. Simpson's rule ix used for numerical integration to make the mass matrix diagonal. The friction terms are represented semi-implicitly to improve stability, but no additional compu- tational effort is required. The shortcomings of this scheme are that the time-stepping scheme is only first-order ae- curate and artificial smoothing is required to control the numerical noise. In this paper, the previous scheme is im- proved by including the eddy viscosity terms in the governing equations to replace artificial smoothing in noise con- trol and the time-stepping scheme is modified to make it second-order accurate. These improvements can be achieved with only a slight increase in computational effort. The test cases used previously to validate the former scheme are again employed to test the present scheme. 展开更多
关键词 Flow AN IMPROVED EFFICIENT SEMI-IMPLICIT finite element SCHEME FOR TWO-DIMENSIONAL TIDAL FLOW computationS SEMI
原文传递
THE COMPUTATION OF SEEPAGE FORCE ON MARINE STRUCTURES WITH FINITE ELEMENT METHOD
4
作者 Tang Ling Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University of Technology,Shanghai 200072,P.R.China Liu Ying-zhong Shanghai Jiaotong University,Shanghai 200030,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1990年第3期36-44,共9页
The wave-induced seepage force is investigated on marine structures resting on or buried in the seabed.The bed is modelled as a poroelastic medium containing a nearly saturated water.The governing equations are solved... The wave-induced seepage force is investigated on marine structures resting on or buried in the seabed.The bed is modelled as a poroelastic medium containing a nearly saturated water.The governing equations are solved with Finite Element Method.For a pipeline buried in the seabed,agreement between the present numerical results and that of Cheng H.D.(1986)is quite satisfactory. 展开更多
关键词 THE computation OF SEEPAGE FORCE ON MARINE STRUCTURES WITH finite element METHOD
原文传递
Dynamic self-adaptive ANP algorithm and its application to electric field simulation of aluminum reduction cell 被引量:1
5
作者 王雅琳 陈冬冬 +2 位作者 陈晓方 蔡国民 阳春华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4731-4739,共9页
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ... Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance. 展开更多
关键词 finite element parallel computing(FEPC) region partition(RP) dynamic self-adaptive ANP(DSA-ANP) algorithm electric field simulation aluminum reduction cell(ARC)
下载PDF
Simulation and computational heat transfer in the human eye with Dirichlet–Neumann domain decomposition approximation
6
作者 Salem Ahmedou Bamba Abdellatif Ellabib 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2019年第6期107-128,共22页
In this paper,a bioheat model of temperature distribution in the human eye is studied,the mathematical formulation of this model is described using adequate mathematical tools.The existence and the uniqueness of the s... In this paper,a bioheat model of temperature distribution in the human eye is studied,the mathematical formulation of this model is described using adequate mathematical tools.The existence and the uniqueness of the solution of this problem is proven and four algorithms based on finite element method approximation and domain decomposition methods are presented in details.The validation of all algorithm is done using a numerical application for an example where the analytical solution is known.The properties and parameters reported in the open literature for the human eye are used to approximate numerically the temperature for bioheat model by finite element approximation and nonoverlapping domain decomposition method.The obtained results that are verified using the experimental results recorded in the literature revealed a better accuracy by the use of algorithm proposed. 展开更多
关键词 Nonoverlapping domain decomposition human eye bioheat transfer finite element computation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部