期刊文献+
共找到1,179篇文章
< 1 2 59 >
每页显示 20 50 100
Finite element failure analysis of continuous prestressed concrete box girders 被引量:4
1
作者 张峰 李术才 +2 位作者 李树忱 叶见曙 雷笑 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期236-240,共5页
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a... In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity. 展开更多
关键词 full-scale failure test prestressed concrete box girder finite element analysis combined element prestressed tendon load carrying capacity
下载PDF
Finite element analysis of stress distribution and burst failure of SiC_f/Ti-6Al-4V composite ring 被引量:2
2
作者 张红园 杨延清 罗贤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期261-270,共10页
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo... A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature. 展开更多
关键词 titanium-matrix composites RING stress distribution burst failure finite element analysis thermal residual stresses
下载PDF
Finite element analysis of the end cutting process for U-section parts with high-strength steel 被引量:1
3
作者 SHI Lei1,2),DONG Liang3),XIAO Hua1,2),HAN Fei1,2) and LI Shuhui3) 1) Auto Steel Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 2) State Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel),Shanghai 201900,China 3) Shanghai Jiaotong University,Shanghai 200240,China 《Baosteel Technical Research》 CAS 2012年第1期32-36,共5页
This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isot... This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isotropic hardening into account,is presented.Three factors are investigated to determine the effect on cutting quality:radius of cutting tools,strength of materials and relative clearance in cutting.The recommendations made herein are based on the simulation results. 展开更多
关键词 finite element analysis end cutting process high-strength steel
下载PDF
Finite element analysis on temperature field and residual stress of welding assembly for I-beam and end-plate
4
作者 贾栗 赵永生 +1 位作者 邹增大 邹勇料 《China Welding》 EI CAS 2013年第1期16-20,共5页
Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperat... Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperature Jbr verification purposes. Results show that the measured thermal cycle curves match well with the simulation result. Simulation results of welding residual stress indicate that the values of longitudinal and transverse stress on the upper surface of the plate are higher than the normal stress; higher tensile stresses exist at the end of the web weld toes and in the central area of the flange weld toes. The dangerous zones are located at the central areas of weld toes of the flange welds and near weld toes of the web welds. 展开更多
关键词 I-beam and end-plate welding assembly temperature field residual stress finite element analysis
下载PDF
Integrity and Failure Analysis of Cement Sheath Subjected to Coalbed Methane Fracturing
5
作者 Lingyun Zhao Heng Yang +3 位作者 Yuanlong Wei Yuhuan Bu Shaorui Jing Peiming Zhou 《Fluid Dynamics & Materials Processing》 EI 2023年第2期329-344,共16页
Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic mo... Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic modulus of the cement,elastic modulus of the formation,and casing eccentricity on the resulting stresses are analyzed in the frame of a finite element method.Subsequently,sensitivity response curves of the cement sheath stress are plotted by normalizing all factors.The results show that the maximum circumferential stress and Mises stress of the cement sheath increase with the casing internal pressure,elastic modulus of the cement and casing eccentricity.As the elastic modulus of the formation increases,the maximum circumferential stress of the cement sheath decreases,and its maximum Mises stress increases slightly.The cement sheath undergoes tensile failure during coalbed methane fracturing.The stress sensitivity of the cement sheath to the influential parameters is in the following order:casing internal pressure>elastic modulus of cement sheath>casing eccentricity>elastic modulus of formation. 展开更多
关键词 Coalbed methane fracturing finite element method cement sheath integrity sensitivity analysis failure analysis
下载PDF
Experimental and finite element analysis for fracture of coating layer of galvannealed steel sheet 被引量:2
6
作者 S.I.KIM J.U.HER +1 位作者 Y.C.JANG Y.LEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期111-116,共6页
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t... Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well. 展开更多
关键词 galvannealed steel sheet fracture simulation coating layer finite element analysis failure model
下载PDF
NONLINEAR FINITE ELEMENT ANALYSIS OF CONCRETE OFFSHORE PLATFORMS
7
作者 Song, Yupu Wang, Jian 《China Ocean Engineering》 SCIE EI 1989年第3期293-305,共13页
Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams sh... Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis. 展开更多
关键词 CONCRETE Stresses failure analysis Mathematical Techniques finite element Method Stresses analysis
下载PDF
APPLICATION OF STOCHASTIC FINITE ELEMENT METHOD TO STRENGTH AND STABILITY ANALYSIS OF EARTH DAMS
8
作者 Yongjian, Ren Guoqing, Wang +1 位作者 Derong, Wei Jizhong, Shi 《Acta Mechanica Solida Sinica》 SCIE EI 1994年第1期80-86,共7页
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b... This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described. 展开更多
关键词 Accident prevention failure (mechanical) finite element method Random processes RELIABILITY Stability STATISTICS Strength of materials Stress analysis Structural analysis Water levels
下载PDF
Finite Element Analysis of Graphite/Epoxy Composite Pressure Vessel
9
作者 Meng-Kao Yeh Tai-Hung Liu 《Journal of Materials Science and Chemical Engineering》 2017年第7期19-28,共10页
Shell structure is widely used in industrial applications, such as in machinery, aerospace, ship and building fields, as well as containers of pressurized chemicals or liquefied natural gas. Graphite/epoxy composites ... Shell structure is widely used in industrial applications, such as in machinery, aerospace, ship and building fields, as well as containers of pressurized chemicals or liquefied natural gas. Graphite/epoxy composites has advantages of light weight, high strength, corrosion resistance, low expansion, low shrin kage and are often used in the form of composite pressure vessel for various engineering applications. In this study, the stress distributions of composite pressure vessel were analyzed. The finite element code ANSYS was used in analysis, in which the eight-node element SHELL 281 was adopted. The internal pressure 20 MPa, as in container of compressed natural gas, was applied inside the symmetrical cross-ply graphite/epoxy composite pressure vessel. The finite element model was established with suitable mesh size and boundary conditions. The stress distributions are discussed for the composite pressure vessel, especially for the inner two layers at the junction of semis pherical part. The Tsai-Hill criterion was used to assess the failure of composite pressure vessel. 展开更多
关键词 finite element analysis Stress analysis Composite Pressure VESSEL Tsai-Hill failure CRITERION
下载PDF
Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil
10
作者 Zhijun Yang Kexin Chen +1 位作者 Xudong Fu Zhiyan Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期183-191,共9页
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re... The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results. 展开更多
关键词 Composite pile Ultimate soil resistance finite element limit analysis(FELA) Plasticity theory failure mode
下载PDF
Failure mode prediction of sandwich plate under bending loads
11
作者 孙凌玉 陈卫卫 冯江波 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期272-279,共8页
To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads wer... To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads were studied through simulation, test and analytic methods. Based on published papers, the dimensionless values of limit loads for different failure modes were modified according to real test condition. The load-deformation relation from the analytical formulae was compared with that from experimental and numerical results. A mechanism map was provided to reveal the dependence of the dominant collapse mechanism upon the geometry parameters of the face and the core. The results show that the prediction accuracy was high only if the face thickness was much smaller than the core thickness. 展开更多
关键词 sandwich structures failure mode finite element analysis foam
下载PDF
Stress and Displacement Distribution of Soft Clay Slope with 2D and 3D Elastoplastic Finite Element Method
12
作者 严祖文 阎澍旺 李飒 《Transactions of Tianjin University》 EI CAS 2006年第4期308-312,共5页
Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability an... Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio. 展开更多
关键词 slope stability soft clay soil elastoplasticity finite element method end effect stress analysis
下载PDF
Ply-by-Ply Failure Analysis of Laminates under Dynamic Loading
13
作者 Ravi Joshi P.Pal 《Sound & Vibration》 EI 2021年第2期173-190,共18页
Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followe... Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted. 展开更多
关键词 Composite laminates failure mode dynamic load finite element analysis(FEA)
下载PDF
Performance Analysis of Nested-loop Secondary Linear Doubly-fed Machine Considering End Effects
14
作者 Yaping Zhang Jian Ge +4 位作者 Wei Xu Weiye Li Yinglu Luo Shihu Su Yunfeng He 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期298-305,共8页
Nested-loop secondary linear doubly-fed machine(NLS-LDFM) is a novel linear machine evolved from rotary brushless doubly-fed induction machine, which has a good application prospect in linear metro. In order to analyz... Nested-loop secondary linear doubly-fed machine(NLS-LDFM) is a novel linear machine evolved from rotary brushless doubly-fed induction machine, which has a good application prospect in linear metro. In order to analyze the performance of NLS-LDFM, the mechanism and action rules of end effects are investigated in this paper. Firstly, the mechanism of static and dynamic end effects is analyzed in aspect of direct coupling, winding asymmetry and transient secondary current. Furthermore, based on the winding theory for short primary linear machines, the machine parameters are established qualitatively considering pulsating magnetic field of NLS-LDFM. Finally, the NLS-LDFM performance analysis is supplemented by the finite element algorithm(FEA) simulation and experiments under different operating conditions. 展开更多
关键词 Linear doubly-fed machine(LDFM) end effect Parameter analysis finite element algorithm(FEA)
下载PDF
Strength reduction and step-loading finite element approaches in geotechnical engineering 被引量:23
15
作者 Yingren Zheng Xiaosong Tang +2 位作者 Shangyi Zhao Chujian Deng Wenjie Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期21-30,共10页
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch... The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling. 展开更多
关键词 finite element limit analysis method strength reduction step-loading embedded anti-slide piles reservoir slope FOUNDATION
下载PDF
Damage smear method for rock failure process analysis 被引量:3
16
作者 G.Li X.F.Cheng +1 位作者 H.Pu C.A.Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1151-1165,共15页
Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic ... Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations. 展开更多
关键词 failure PROCESS SMEAR METHOD MESO-DAMAGE finite element METHOD (FEM) Rock failure PROCESS analysis (RFPA)
下载PDF
Geotechnical investigations and remediation design for failure of tunnel portal section: a case study in northern Turkey 被引量:7
17
作者 Ayberk KAYA Kadir KARAMAN Fikri BULUT 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1140-1160,共21页
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant... Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses. 展开更多
关键词 Portal failure Stability analysis finite element method Tunnel support design Remedial measures Rock Mass Rating(RMR) Rock Mass Quality(Q) New Austrian Tunneling Method(NATM)
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:2
18
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs Impact loading Eccentric impacts Concrete models finite element analysis Damage profiles Stresses Peak acceleration failure modes Damage dissipation energy CRACKING Drop-weight locations
下载PDF
Failure envelope of a caisson foundation under combined vertical,horizontal and moment loadings
19
作者 Abdellatif Boucheloukh Gong Weiming +1 位作者 Dai Guoliang Zhu Mingxing 《Journal of Southeast University(English Edition)》 EI CAS 2020年第2期188-197,共10页
To investigate the bearing capacity of a caisson foundation under combined vertical,horizontal and moment loadings,the three-dimensional finite element analyses of a circular caisson foundation in homogenous sandy soi... To investigate the bearing capacity of a caisson foundation under combined vertical,horizontal and moment loadings,the three-dimensional finite element analyses of a circular caisson foundation in homogenous sandy soil subjected to combined loadings are conducted.The caisson model has a depth to breadth ratio equaling one,and a soil-caisson interface friction coefficientμ=0.3.First,the responses of caisson foundations under uniaxial vertical loading V,horizontal loading H and moment loading M are examined.Moreover,the responses of caisson foundations under combined vertical-horizontal V-H,vertical-moment V-M and horizontal-moment H-M load space are studied and presented using normalized failure envelopes generated by the load-controlled method.Subsequently,the bearing behavior of caisson foundations under combined vertical-horizontal-moment V-H-M load space,as well as the kinematic mechanisms accompanying the failure under uniaxial and combined loading,are addressed and presented for different vertical load ratios V/Vu.Finally,three equations that approximate the three-dimensional shape of the failure locus are proposed,which provides a convenient means of calculating the bearing capacity of a caisson foundation subjected to uniaxial and combined vertical,horizontal and moment loadings. 展开更多
关键词 caisson foundation failure envelope finite element analysis bearing capacity sandy soil
下载PDF
Numerical and Experimental Study on Vibration and Noise of Embedded Rail System
20
作者 Fangyao Yeh Xiaoting Chang Yuchi Sung 《Journal of Applied Mathematics and Physics》 2017年第9期1629-1637,共9页
The Kaohsiung light rail transit (LRT) system first introduced embedded rail system in Taiwan. However, domestic engineering consultants are still lacking in experience of analysis, design and construction of embedded... The Kaohsiung light rail transit (LRT) system first introduced embedded rail system in Taiwan. However, domestic engineering consultants are still lacking in experience of analysis, design and construction of embedded rail systems. Noise and vibration of the mass rapid transit system is an important environmental issue in an urban environment. In order to understand the environmental impact of noise due to structural vibrations caused by a train running on the rail system, this paper establishes a numerical analysis procedure to perform a simulation. There are two fundamental parts to the numerical simulation: 1) vibration response due to a moving load and 2) radiation propagation of noise induced by structural vibration. The Kaohsiung LRT is used as a case study. The real embedded rail track system is modeled using ANSYS software with finite element analysis and the dynamic time history of the vibration response of the rail caused by a moving load is obtained. Secondly, the dynamic vibration response of the rail outputted by ANSYS is then imported into the software LMS Virtual.Lab to obtain the external radiation and sound field pressure distribution transferred from the rail to a specific monitoring point, based on the boundary element method. This paper also conducts field measurements of vibration velocity and sound pressure as a train passes. Both the experimental and analytical results for noise at specific points are compared and discussed. The proposed procedure promises to be suitable for practical vibration and noise analyses for rail systems. 展开更多
关键词 embedded RAIL SYSTEM Noise and Vibration analysis finite element METHOD BOUNDARY element METHOD
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部