A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-M...A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.展开更多
The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealin...The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.展开更多
In this study we use a boundary integral element-based numerical technique to solve the generalized Burger-Fisher equation. The essential feature of this method is the fundamental integral representation of the soluti...In this study we use a boundary integral element-based numerical technique to solve the generalized Burger-Fisher equation. The essential feature of this method is the fundamental integral representation of the solution inside the problem domain by means of both the boundary and domain values. The occurrences of domain integrals within the problem arising from nonlinearity as well as the temporal derivative are not avoided or transferred to the boundary. However, unlike the classical boundary element approach, they are resolved within a finite-element-type discrete domain. The utility and correctness of this formulation are proved by comparing the results obtained herein with closed form solutions.展开更多
将基于六面体网格的高阶矢量基函数(higher order vector basisfunction)引入到矢量有限元-边界积分(FE-BI)混合方法中,用于建模带有深腔和狭长缝隙结构三维目标的电磁散射特性;提出了一种新型的预条件技术,用于加速FE-BI系统的迭代求解...将基于六面体网格的高阶矢量基函数(higher order vector basisfunction)引入到矢量有限元-边界积分(FE-BI)混合方法中,用于建模带有深腔和狭长缝隙结构三维目标的电磁散射特性;提出了一种新型的预条件技术,用于加速FE-BI系统的迭代求解;给出了结合该预条件技术的GMRES方法求解腔体电磁散射的算例;数值结果证明了高阶FE-BI方法相对于低阶FE-BI方法的优势以及新型预条件技术的有效性。展开更多
在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition met...在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition method,FE-BI-DDM)的基础上,采用了更为灵活的多区多求解器的方法(multi domain multi solver method,MDMSM)。该方法对导弹类金属-介质复合目标中难以收敛的金属区域,使用快速直接求逆的方法求解,由于可以使用独立的网格模型进行电磁建模,避免了内迭代部分的模型重复建立过程,从而大幅减少了整体模型求解时间。实验结果表明:所提方法可以在相同计算精度的条件下,以不过多增加内存空间为前提,大幅缩短了导弹类目标的金属-介质复合模型的电磁求解时间。该方法为开展导弹类目标特性分析提供了一条可行的技术途径。展开更多
采用有限元-边界积分(finite element boundary integral,FE-BI)方法研究了介质粗糙面上方涂覆目标的复合电磁散射特性,推导了一维介质粗糙面上方二维涂覆目标电磁散射的FE-BI公式.在仿真中,采用功能强大的有限元方法模拟涂覆目标内部场...采用有限元-边界积分(finite element boundary integral,FE-BI)方法研究了介质粗糙面上方涂覆目标的复合电磁散射特性,推导了一维介质粗糙面上方二维涂覆目标电磁散射的FE-BI公式.在仿真中,采用功能强大的有限元方法模拟涂覆目标内部场,对于涂覆目标与粗糙面之间的多重耦合作用则通过边界积分方程方法进行考虑.结合Monte-Carlo方法,数值计算了介质高斯粗糙面上方涂覆圆柱目标的电磁散射,分析了涂层材料介电常数、粗糙面粗糙度以及介质粗糙面介电常数变化对复合模型双站散射系数的影响.数值结果表明,相比于传统矩量法(method of moment,MoM),本文方法虽然在处理理想导体模型时效率略低,但可以处理MoM难以处理的复杂媒质电磁散射问题,且计算精度较高.展开更多
By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. I...By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.展开更多
In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening c...In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.展开更多
In this paper we represent a new numerical method for solving the steady Navier-Stokes equations in three dimensional unbounded domain. The method consists in coupling the boundary integral and the finite element nonl...In this paper we represent a new numerical method for solving the steady Navier-Stokes equations in three dimensional unbounded domain. The method consists in coupling the boundary integral and the finite element nonlinear Galerkin methods. An artificial smooth boundary is introduced seperating an interior inhomogeneous region from an exterior one. The Navier-Stokes equations in the exterior region are approximated by the Oseen equations and the approximate solution is represented by an integral equation over the artificial boundary. Moreover, a finite element nonlinear Galerkin method is used to approximate the resulting variational problem. Finally, the existence and error estimates are derived.展开更多
文摘A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.
文摘The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.
文摘In this study we use a boundary integral element-based numerical technique to solve the generalized Burger-Fisher equation. The essential feature of this method is the fundamental integral representation of the solution inside the problem domain by means of both the boundary and domain values. The occurrences of domain integrals within the problem arising from nonlinearity as well as the temporal derivative are not avoided or transferred to the boundary. However, unlike the classical boundary element approach, they are resolved within a finite-element-type discrete domain. The utility and correctness of this formulation are proved by comparing the results obtained herein with closed form solutions.
文摘将基于六面体网格的高阶矢量基函数(higher order vector basisfunction)引入到矢量有限元-边界积分(FE-BI)混合方法中,用于建模带有深腔和狭长缝隙结构三维目标的电磁散射特性;提出了一种新型的预条件技术,用于加速FE-BI系统的迭代求解;给出了结合该预条件技术的GMRES方法求解腔体电磁散射的算例;数值结果证明了高阶FE-BI方法相对于低阶FE-BI方法的优势以及新型预条件技术的有效性。
文摘在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition method,FE-BI-DDM)的基础上,采用了更为灵活的多区多求解器的方法(multi domain multi solver method,MDMSM)。该方法对导弹类金属-介质复合目标中难以收敛的金属区域,使用快速直接求逆的方法求解,由于可以使用独立的网格模型进行电磁建模,避免了内迭代部分的模型重复建立过程,从而大幅减少了整体模型求解时间。实验结果表明:所提方法可以在相同计算精度的条件下,以不过多增加内存空间为前提,大幅缩短了导弹类目标的金属-介质复合模型的电磁求解时间。该方法为开展导弹类目标特性分析提供了一条可行的技术途径。
文摘采用有限元-边界积分(finite element boundary integral,FE-BI)方法研究了介质粗糙面上方涂覆目标的复合电磁散射特性,推导了一维介质粗糙面上方二维涂覆目标电磁散射的FE-BI公式.在仿真中,采用功能强大的有限元方法模拟涂覆目标内部场,对于涂覆目标与粗糙面之间的多重耦合作用则通过边界积分方程方法进行考虑.结合Monte-Carlo方法,数值计算了介质高斯粗糙面上方涂覆圆柱目标的电磁散射,分析了涂层材料介电常数、粗糙面粗糙度以及介质粗糙面介电常数变化对复合模型双站散射系数的影响.数值结果表明,相比于传统矩量法(method of moment,MoM),本文方法虽然在处理理想导体模型时效率略低,但可以处理MoM难以处理的复杂媒质电磁散射问题,且计算精度较高.
基金supported by the National Natural Science Foundation of China (No. 10872213)
文摘By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.
基金Item Sponsored by National Natural Science Foundation of China(51075353)
文摘In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.
文摘In this paper we represent a new numerical method for solving the steady Navier-Stokes equations in three dimensional unbounded domain. The method consists in coupling the boundary integral and the finite element nonlinear Galerkin methods. An artificial smooth boundary is introduced seperating an interior inhomogeneous region from an exterior one. The Navier-Stokes equations in the exterior region are approximated by the Oseen equations and the approximate solution is represented by an integral equation over the artificial boundary. Moreover, a finite element nonlinear Galerkin method is used to approximate the resulting variational problem. Finally, the existence and error estimates are derived.