Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to dedu...Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea.展开更多
To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displace...To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displacements of boundary tissues and the force distribution, the Young's modulus is calculated by constructing the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is adopted to calculate the whole Yong's modulus distribution. The presented algorithm overcomes some limitations in other Young's modulus reconstruction methods and relaxes the displacements and force boundary condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values obtained during searching in an extensive range.展开更多
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The ...By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.展开更多
The small punch test technique (SPT) was used to evaluate the mechanical properties of various materials and the basic method to test material tensile mechanics peqeormance from an inverse finite element ( FE) ari...The small punch test technique (SPT) was used to evaluate the mechanical properties of various materials and the basic method to test material tensile mechanics peqeormance from an inverse finite element ( FE) arithmetic with SPT was put forward. The research shows that specific tensile mechanical behavior and strain-stress distribution of each district of weld seam can be accurately determined by small punch test. Therefore, mechanical behavior of the inhomogeneous joint can be predicted by a numerical model. The simulation comes to good agreement with experimental data.展开更多
文摘Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea.
文摘To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displacements of boundary tissues and the force distribution, the Young's modulus is calculated by constructing the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is adopted to calculate the whole Yong's modulus distribution. The presented algorithm overcomes some limitations in other Young's modulus reconstruction methods and relaxes the displacements and force boundary condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values obtained during searching in an extensive range.
基金Project supported by the National Natural Sciences Foundation of China(No. 50335060).
文摘By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.
文摘The small punch test technique (SPT) was used to evaluate the mechanical properties of various materials and the basic method to test material tensile mechanics peqeormance from an inverse finite element ( FE) arithmetic with SPT was put forward. The research shows that specific tensile mechanical behavior and strain-stress distribution of each district of weld seam can be accurately determined by small punch test. Therefore, mechanical behavior of the inhomogeneous joint can be predicted by a numerical model. The simulation comes to good agreement with experimental data.