The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By me...This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By means of a comprehensive framework,a Coulomb-type failure criterion accounting for friction mobilization was defined.During the elastic phase,in which the interface joint is not yet created,the proposed model provides zero radial displacement,and once the interface joint is created,interface dilatancy is modeled using a non-associated plastic potential inspired from the behavior of rock joints.The results predicted by the proposed model are in good agreement with experimental results.The model has been implemented in a finite element method(FEM)code and numerical simulations have been performed at the elementary and the structural scales.The results obtained provide confidence in the ability of the new model to assist in the design and optimization of bolting patterns.展开更多
In the paper a linear combination of both the standard mixed formulation and the displacement one of the Reissner-Mindlin plate theory is used to enhance stability of the former and to remove ''locking'...In the paper a linear combination of both the standard mixed formulation and the displacement one of the Reissner-Mindlin plate theory is used to enhance stability of the former and to remove ''locking'' of the later. For this new stabilized formulation, a unified approach to convergence analysis is presented for a wide spectrum of finite element spaces. As long as the rotation space is appropriately enriched, the formulation is convergent for the finite element spaces of sufficiently high order. Optimal-order error estimates with constants independent of the plate thickness are proved for the various lower order methods of this kind.展开更多
The compression performance of a degradable ureteral stent is analyzed and the parameters are optimized by a finite element modeling method.The degradable ureteral stent explored in this paper is developed from poly(g...The compression performance of a degradable ureteral stent is analyzed and the parameters are optimized by a finite element modeling method.The degradable ureteral stent explored in this paper is developed from poly(glycolic acid)(PGA)and poly(lactic-co-glycolic acid)(PLGA)degradable materials.Based on the actual measurement of fabric structure parameters,the three-dimensional model of the stent is established with the help of the modeling software.The finite element analysis software is used to simulate the compression process of the degradable ureteral stent.The parameters of materials,interactions and boundary conditions are set according to the compression environment of the stent for modeling and simulation.On this basis,the friction coefficient of yarns,the yarn radius,and the braided angle of the stent are further compared.The comparison test is carried out by a single variable.The experimental results show that the change of yarn friction coefficient has little influence on the compressive stress,while the yarn radius and the braided angle of the stent have a great influence on the compressive stress.展开更多
This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite elem...This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite element model of GMM smart component in electric, magnetic, and mechanical fields by step computation to optimize the design of GMM smart com-ponent. The proposed model is implemented by using COMSOL multi-physics V3.2a. The effects of the smart component on the deformation and the system resonance frequencies are studied. The results calculated by the model are in excellent agreement (relative errors are below 10%) with the experimental values.展开更多
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
基金supported by the Research Fund for Coal and Steel(RFCS)in the context of the European project Advancing Mining Support Systems to Enhance the Control of Highly Stressed Ground(AMSSTED)。
文摘This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By means of a comprehensive framework,a Coulomb-type failure criterion accounting for friction mobilization was defined.During the elastic phase,in which the interface joint is not yet created,the proposed model provides zero radial displacement,and once the interface joint is created,interface dilatancy is modeled using a non-associated plastic potential inspired from the behavior of rock joints.The results predicted by the proposed model are in good agreement with experimental results.The model has been implemented in a finite element method(FEM)code and numerical simulations have been performed at the elementary and the structural scales.The results obtained provide confidence in the ability of the new model to assist in the design and optimization of bolting patterns.
文摘In the paper a linear combination of both the standard mixed formulation and the displacement one of the Reissner-Mindlin plate theory is used to enhance stability of the former and to remove ''locking'' of the later. For this new stabilized formulation, a unified approach to convergence analysis is presented for a wide spectrum of finite element spaces. As long as the rotation space is appropriately enriched, the formulation is convergent for the finite element spaces of sufficiently high order. Optimal-order error estimates with constants independent of the plate thickness are proved for the various lower order methods of this kind.
基金National Natural Science Foundation of China(No.61903078)Fundamental Research Funds for the Central Universities of Ministry of Education of China(Nos.2232021A-10 and 2232020D-48)+1 种基金Natural Science Foundation of Shanghai,China(No.20ZR1400400)Ministry of Education and Research Collaborative Educational Projects,China(No.202102314006)。
文摘The compression performance of a degradable ureteral stent is analyzed and the parameters are optimized by a finite element modeling method.The degradable ureteral stent explored in this paper is developed from poly(glycolic acid)(PGA)and poly(lactic-co-glycolic acid)(PLGA)degradable materials.Based on the actual measurement of fabric structure parameters,the three-dimensional model of the stent is established with the help of the modeling software.The finite element analysis software is used to simulate the compression process of the degradable ureteral stent.The parameters of materials,interactions and boundary conditions are set according to the compression environment of the stent for modeling and simulation.On this basis,the friction coefficient of yarns,the yarn radius,and the braided angle of the stent are further compared.The comparison test is carried out by a single variable.The experimental results show that the change of yarn friction coefficient has little influence on the compressive stress,while the yarn radius and the braided angle of the stent have a great influence on the compressive stress.
基金supported by the National Natural Science Foundation of China (No. 50575205)the Hi-Tech Research and Development (863) Program of China (Nos. 2006AA04Z233 and 2007AA04Z101)+1 种基金the Doctoral Foundation of Ministry of Education of China (No. 20070335204)the Zhejiang Provincial Natural Science Foundation of China (No. Z1080537)
文摘This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite element model of GMM smart component in electric, magnetic, and mechanical fields by step computation to optimize the design of GMM smart com-ponent. The proposed model is implemented by using COMSOL multi-physics V3.2a. The effects of the smart component on the deformation and the system resonance frequencies are studied. The results calculated by the model are in excellent agreement (relative errors are below 10%) with the experimental values.