Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we rep...Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we report an eficient numerical method for fluorescence moleeular tom-ography(FMT)that combines the advantage of SP model and adaptive hp finite elementmethod(hp-FEM).For purposes of comparison,hp-FEM and h-FEM are,respectively applied tothe reconstruction pro cess with diffusion approximation and SPs model.Simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom are designed to evaluate thereconstruction methods in terms of the location and the reconstructed fluorescent yield.Theexperimental results demonstrate that hp-FEM with SPy model,yield more accurate results thanh-FEM with difusion approximation model does.The phantom experiments show the potentialand feasibility of the proposed approach in FMT applications.展开更多
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha...Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.展开更多
A model was established based on Maxwell's equations and Navier-Stokes' equations to numerically simulate the electromagnetic field and flow field in a rectangular mold with sectional aspect ratio of 5:1. The ...A model was established based on Maxwell's equations and Navier-Stokes' equations to numerically simulate the electromagnetic field and flow field in a rectangular mold with sectional aspect ratio of 5:1. The FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed for the model to execute the modeling, meshing, load applying and solving. The Ti-Al alloy melt was selected to illustrate and validate the effects of the harmonic field frequency on the distribution of the physical fields in the mold. The simulated results demonstrate that with an increasing frequency the electric current forms an ellipsoid cavity where it becomes much weaker, and that the melt flows more intensely with low frequency (less than 5 kHz) than with high frequency (more than 5 kHz). The melt is pinched from the central part in the mold to bipolar parts in which it forms two vortexes in each side. The maximum value of fluid velocity exists near the bipolar zone.展开更多
A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element metho...A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the performance of the method for tidal property fields with different characteristics, boundary complexity, number of input data points, and data point distribution. The method has been successfully applied under several different tidal environments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infiite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces interpolation results with better accuracy and precision.展开更多
The design of high current balance reactors used in the ITER DC testing platform is presented,which is verified by simulations with finite element method software,and the reactors are fabricated and tested according t...The design of high current balance reactors used in the ITER DC testing platform is presented,which is verified by simulations with finite element method software,and the reactors are fabricated and tested according to the design output.These reactors are chosen as multilayer multi-turn structure and cooled by water.The multilayer multi-turn structure is usually selected by some high voltage reactors,but is seldom used in high current situations.The analysis and testing results indicate that the multilayer multi-turn structure is also feasible for high current reactors with many advantages,and is of considerable significance to similar applications.展开更多
The inverter is used as the power supply of modern permanent magnet synchronous motor (PMSM). The inverter may produce harmonics in inversion process and form harmonic currents in motor stator winding which can lead t...The inverter is used as the power supply of modern permanent magnet synchronous motor (PMSM). The inverter may produce harmonics in inversion process and form harmonic currents in motor stator winding which can lead to factors against motor smooth operation such as torque fluctuating and winding heating. This article focuses on the harmonic currents formed in the motor stator winding by getting the harmonics frequency spectrum with software. The effect of harmonic currents to motor torque is analyzed with the finite element method (FEM).展开更多
The spoke-type permanent magnet motor with auxiliary stator exhibits high torque performance owing to the flux focus effects.To further improve its torque density,this paper proposes a control method by using harmonic...The spoke-type permanent magnet motor with auxiliary stator exhibits high torque performance owing to the flux focus effects.To further improve its torque density,this paper proposes a control method by using harmonic current strategy.Based on the theoretical analysis,a 3-D torque look-up table by dq-axis current and electrical angle is established with the aid of the finite element method(FEM).The maximum torque per ampere curve at each rotor position is identified and summarized to adequately indicate the relationship between torque and current amplitude of the motor.Through theoretical derivation,it is concluded that the minimum torque cost curve is the contour line of?Te/?i2,which can be employed to identify the harmonic current for torque density improvement.Compared to traditional strategies,the proposed control strategy can increase torque density of forward and reverse torque by 1.22%and 1.40%,respectively.The experimental results verify the analysis and simulation results,as well as prove the effectiveness of the proposed strategy.展开更多
The effect of temperature loading on the stress of a flexspline is investigated. Based on the geometric and mechanical characteristics of the harmonic gear flexspline, a circular thin shell model is presented in this ...The effect of temperature loading on the stress of a flexspline is investigated. Based on the geometric and mechanical characteristics of the harmonic gear flexspline, a circular thin shell model is presented in this paper. The theoretical solution for the flexspline under different displacement loads and different temperature fields is derived. Meanwhile, an impact factor formula, which reflects the effect of the temperatures of the inner and outer surfaces of the flexspline on the stress of the flexspline, is presented. Finally, numerical calculations by the finite element method (FEM) are adopted to verify the corresponding conclusions.展开更多
The principle of thermal flux being constant in heat flow tube and the principle of heat balance were applied to analyze and calculate the steady state thermal field and the electrolyte ledge heat transfer coefficient...The principle of thermal flux being constant in heat flow tube and the principle of heat balance were applied to analyze and calculate the steady state thermal field and the electrolyte ledge heat transfer coefficient of aluminum reduction cell by finite element method. The calculated results show that the melt ledge heat transfer coefficient in the 160kA prebaked anode aluminum reduction cell of Guizhou Aluminum Smelter is higher than that of other cells of the same current. It is also found that the electrolyte and metal flow much faster, which may be the results of poor bus bar arrangements. Meanwhile, the calculated results of melt ledge heat transfer coefficient by heat flow tube method are almost in full agreement with the former works. This verifies the applicability of this method.展开更多
The dynamic analysis of a 1150 MW turbine generator system using the transfer matrix method (TMM) and the finite element method (FEM) for computation is presented.Excellent agreement was obtained between critical spe...The dynamic analysis of a 1150 MW turbine generator system using the transfer matrix method (TMM) and the finite element method (FEM) for computation is presented.Excellent agreement was obtained between critical speeds computed by TMM and FEM,respectively.The entire system modes are considerably different from the individual component modes.Using the mode shapes as a baseline,modal analysis of field balance can be implemented for this rotor system.A comparison of the experimental and theoretical predictions are presented,too.The forced responses of the system including foundation or pedestal mass,stiffness and damping effects were computed by means of FEM.It is approved that an appropriately formed and placed force couple,as a dynamic balance couple,may suppress strong forced vibrations in the vicinity of critical speeds close to the operating speed.Also,the bearings of low pressure turbines need to be well damped to avoid exciting lower and median critical speed modes.展开更多
The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealin...The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.展开更多
A computational study on the enhancement of the second harmonic generation(SHG)in one-dimensional(1D)photonic crystals is presented.The mathematical model is derived from a nonlinear system of Maxwell’s equations,whi...A computational study on the enhancement of the second harmonic generation(SHG)in one-dimensional(1D)photonic crystals is presented.The mathematical model is derived from a nonlinear system of Maxwell’s equations,which partly overcomes the shortcoming of some existing models based on the undepleted pump approximation.We designed an iterative scheme coupled with the finite element method which can be applied to simulate the SHG in one dimensional nonlinear photonic band gap structures in our previous work.For the case that the nonlinearity is strong which is desirable to enhance the conversion efficiency,a continuation method is introduced to ensure the convergence of the iterative procedure.The convergence of our method is fast.Numerical experiments also indicate the conversion efficiency of SHG can be significantly enhanced when the frequencies of the fundamental and the second harmonic wave are tuned at the photonic band edges.The maximum total conversion efficiency available reaches more than 50%in all the cases studied.展开更多
Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additi...Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additional heating in transformer parts. It leads to higher losses, early fatigue of insulation, premature failure and reduction of the useful life of the transformer. To prevent these problems, the rated capacity of transformer which supplies harmonic loads must be reduced. In this work, a typical 50 kVA three-phase distribution transformer with real practical parameters is taken under non-linear loads generated due to domestic loads. The core losses is evaluated using the three dimensional model of the transformer developed in FEM (finite element method) program based on valid model of transformer under high harmonic conditions. And finally a relation associated with core losses and amplitude of high harmonic order are reviewed & analyzed and then a comparison is being carried out on the results obtained by different excitation current in transformer windings.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61372046)the Research Fund for the Doctoral Program of Higher Education of China(New Teachers)(Grant No.20116101120018)+6 种基金the China Postdoctoral Science Foundation Funded Project(Grant Nos.2011M501467 and 2012T50814)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2011JQ1006)the Fundamental Research Funds for the Central Universities(Grant No.GK201302007)Science and Technology Plan Program,in Shaanxi Province of China(Grant Nos.2012 KJXX-29 and 2013K12-20-12)the Science and Technology Plan Program in Xian of China(Grant No.CXY1348(2))the.GraduateInovation Project of Northwest University(Grant No.YZZ12093)the Seience and Technology Program of Educational Committee,of Shaanxi Province of China(Grant No.12JK0729).
文摘Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we report an eficient numerical method for fluorescence moleeular tom-ography(FMT)that combines the advantage of SP model and adaptive hp finite elementmethod(hp-FEM).For purposes of comparison,hp-FEM and h-FEM are,respectively applied tothe reconstruction pro cess with diffusion approximation and SPs model.Simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom are designed to evaluate thereconstruction methods in terms of the location and the reconstructed fluorescent yield.Theexperimental results demonstrate that hp-FEM with SPy model,yield more accurate results thanh-FEM with difusion approximation model does.The phantom experiments show the potentialand feasibility of the proposed approach in FMT applications.
基金Supported by pre-research fund of State Key Laboratory (51479080201 JW0802)
文摘Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
基金supported by the Program for New Century Excellent Talents in Universities (GrantNo. NCET-08-0164) of China’s Ministry of Educationthe Foundation of National Key Laboratory for Precision Hot Processing of Metals, China
文摘A model was established based on Maxwell's equations and Navier-Stokes' equations to numerically simulate the electromagnetic field and flow field in a rectangular mold with sectional aspect ratio of 5:1. The FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed for the model to execute the modeling, meshing, load applying and solving. The Ti-Al alloy melt was selected to illustrate and validate the effects of the harmonic field frequency on the distribution of the physical fields in the mold. The simulated results demonstrate that with an increasing frequency the electric current forms an ellipsoid cavity where it becomes much weaker, and that the melt flows more intensely with low frequency (less than 5 kHz) than with high frequency (more than 5 kHz). The melt is pinched from the central part in the mold to bipolar parts in which it forms two vortexes in each side. The maximum value of fluid velocity exists near the bipolar zone.
文摘A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the performance of the method for tidal property fields with different characteristics, boundary complexity, number of input data points, and data point distribution. The method has been successfully applied under several different tidal environments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infiite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces interpolation results with better accuracy and precision.
文摘The design of high current balance reactors used in the ITER DC testing platform is presented,which is verified by simulations with finite element method software,and the reactors are fabricated and tested according to the design output.These reactors are chosen as multilayer multi-turn structure and cooled by water.The multilayer multi-turn structure is usually selected by some high voltage reactors,but is seldom used in high current situations.The analysis and testing results indicate that the multilayer multi-turn structure is also feasible for high current reactors with many advantages,and is of considerable significance to similar applications.
文摘The inverter is used as the power supply of modern permanent magnet synchronous motor (PMSM). The inverter may produce harmonics in inversion process and form harmonic currents in motor stator winding which can lead to factors against motor smooth operation such as torque fluctuating and winding heating. This article focuses on the harmonic currents formed in the motor stator winding by getting the harmonics frequency spectrum with software. The effect of harmonic currents to motor torque is analyzed with the finite element method (FEM).
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘The spoke-type permanent magnet motor with auxiliary stator exhibits high torque performance owing to the flux focus effects.To further improve its torque density,this paper proposes a control method by using harmonic current strategy.Based on the theoretical analysis,a 3-D torque look-up table by dq-axis current and electrical angle is established with the aid of the finite element method(FEM).The maximum torque per ampere curve at each rotor position is identified and summarized to adequately indicate the relationship between torque and current amplitude of the motor.Through theoretical derivation,it is concluded that the minimum torque cost curve is the contour line of?Te/?i2,which can be employed to identify the harmonic current for torque density improvement.Compared to traditional strategies,the proposed control strategy can increase torque density of forward and reverse torque by 1.22%and 1.40%,respectively.The experimental results verify the analysis and simulation results,as well as prove the effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China(Nos.10972128 and11142004)the Shanghai Leading Academic Discipline Project(No.S30106)
文摘The effect of temperature loading on the stress of a flexspline is investigated. Based on the geometric and mechanical characteristics of the harmonic gear flexspline, a circular thin shell model is presented in this paper. The theoretical solution for the flexspline under different displacement loads and different temperature fields is derived. Meanwhile, an impact factor formula, which reflects the effect of the temperatures of the inner and outer surfaces of the flexspline on the stress of the flexspline, is presented. Finally, numerical calculations by the finite element method (FEM) are adopted to verify the corresponding conclusions.
文摘The principle of thermal flux being constant in heat flow tube and the principle of heat balance were applied to analyze and calculate the steady state thermal field and the electrolyte ledge heat transfer coefficient of aluminum reduction cell by finite element method. The calculated results show that the melt ledge heat transfer coefficient in the 160kA prebaked anode aluminum reduction cell of Guizhou Aluminum Smelter is higher than that of other cells of the same current. It is also found that the electrolyte and metal flow much faster, which may be the results of poor bus bar arrangements. Meanwhile, the calculated results of melt ledge heat transfer coefficient by heat flow tube method are almost in full agreement with the former works. This verifies the applicability of this method.
文摘The dynamic analysis of a 1150 MW turbine generator system using the transfer matrix method (TMM) and the finite element method (FEM) for computation is presented.Excellent agreement was obtained between critical speeds computed by TMM and FEM,respectively.The entire system modes are considerably different from the individual component modes.Using the mode shapes as a baseline,modal analysis of field balance can be implemented for this rotor system.A comparison of the experimental and theoretical predictions are presented,too.The forced responses of the system including foundation or pedestal mass,stiffness and damping effects were computed by means of FEM.It is approved that an appropriately formed and placed force couple,as a dynamic balance couple,may suppress strong forced vibrations in the vicinity of critical speeds close to the operating speed.Also,the bearings of low pressure turbines need to be well damped to avoid exciting lower and median critical speed modes.
文摘The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.
基金supported by the fundamental research funds for the central universities(BUPT2009RC0706)the Project 11001030 supported by National Natural Science Foundation of China+3 种基金the open fund of key laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)of Ministry of Educationsupported in part by the NSF grants DMS-0604790,DMS-0908325,CCF-0830161,EAR-0724527,and DMS-0968360the ONR grant N00014-09-1-0384a special research grant from Zhejiang University.
文摘A computational study on the enhancement of the second harmonic generation(SHG)in one-dimensional(1D)photonic crystals is presented.The mathematical model is derived from a nonlinear system of Maxwell’s equations,which partly overcomes the shortcoming of some existing models based on the undepleted pump approximation.We designed an iterative scheme coupled with the finite element method which can be applied to simulate the SHG in one dimensional nonlinear photonic band gap structures in our previous work.For the case that the nonlinearity is strong which is desirable to enhance the conversion efficiency,a continuation method is introduced to ensure the convergence of the iterative procedure.The convergence of our method is fast.Numerical experiments also indicate the conversion efficiency of SHG can be significantly enhanced when the frequencies of the fundamental and the second harmonic wave are tuned at the photonic band edges.The maximum total conversion efficiency available reaches more than 50%in all the cases studied.
文摘Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additional heating in transformer parts. It leads to higher losses, early fatigue of insulation, premature failure and reduction of the useful life of the transformer. To prevent these problems, the rated capacity of transformer which supplies harmonic loads must be reduced. In this work, a typical 50 kVA three-phase distribution transformer with real practical parameters is taken under non-linear loads generated due to domestic loads. The core losses is evaluated using the three dimensional model of the transformer developed in FEM (finite element method) program based on valid model of transformer under high harmonic conditions. And finally a relation associated with core losses and amplitude of high harmonic order are reviewed & analyzed and then a comparison is being carried out on the results obtained by different excitation current in transformer windings.