This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two node...This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.展开更多
The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to...The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is develope...The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is developed,in whichbending-stretching coupling effect is taken into account.An orthotropic equivalentuniaxial stress-strain constitutive model of concrete is used.A program is worked out andused to calculate two reinforced concrete slabs.The results of calculation are in goodconformity with the corresponding test results.In addition,the influence of tension stif-fening effect of cracked concrete on the results of calculation is discussed.展开更多
In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relat...In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based...The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.展开更多
In this paper,we discuss the numerical accuracy of asymptotic homogenization method(AHM)and multiscale finite element method(MsFEM)for periodic composite materials.Through numerical calculation of the model problems f...In this paper,we discuss the numerical accuracy of asymptotic homogenization method(AHM)and multiscale finite element method(MsFEM)for periodic composite materials.Through numerical calculation of the model problems for four kinds of typical periodic composite materials,the main factors to determine the accuracy of first-order AHM and second-order AHM are found,and the physical interpretation of these factors is given.Furthermore,the way to recover multiscale solutions of first-order AHM and MsFEM is theoretically analyzed,and it is found that first-order AHM and MsFEM provide similar multiscale solutions under some assumptions.Finally,numerical experiments verify that MsFEM is essentially a first-order multiscale method for periodic composite materials.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
The Finite Element Limiting Analysis Method(LELAM) has the advantage of combining a numerical analysis method with traditional limiting equilibrium methods.It is particularly applicable to the analysis and design of g...The Finite Element Limiting Analysis Method(LELAM) has the advantage of combining a numerical analysis method with traditional limiting equilibrium methods.It is particularly applicable to the analysis and design of geotechnical engineering.In the early 20th century,FELAM has been developed vigorously in domestic geotechnical engineering over international common finite element procedures.It has made great achievements in basic theory research and computational precision,thus broadening the application fields in practical projects.In order to gradually make innovations in geotechnical design methods,some of our research results are presented,mainly including geotechnical safety factor definitions,the principles for use of the method concerned,the overall failure criterion,the deduction and selection of the yield criterion,and the measurement to improve the computational precision,etc..The application field has been broadened from two-dimensional to three-dimensional,from soil slope to jointed rock slope and foundation,from stable seepage to non-stable seepage,from slope and foundation to tunnel.This method has also been used in search of many hidden sliding surfaces of complex landslides,conducting the structural support design considering the interaction between the soil and the structure,and computing simulation foundation bearing plates load tests,etc..展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this pape...With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this paper, the structure and principle of magnetic flux leakage (MFL) in-line inspection system is introduced first. Besides, a mathematic model of the system according to the ampere circuit rule, flux continuity theorem, and column coordinate transform is built, and the magnetic flux density in every point of space is calculated based on the theory of finite element analysis. Then we analyze and design the disposition of measurement section probes and sensors combining both three-axis MFL in-line inspection and multi-sensor fusion technology. Its advantage is that the three-axis changes of magnetic flux leakage field are measured by the multi-probes at the same time, so we can determine various defects accurately. Finally, the theory of finite element analysis is used to build a finite element simulation model, and the relationship between defects and MFL inspection signals is studied. Simulation and experiment results verify that the method not only enhances the detection ability to different types of defects but also improves the precision and reliability of the inspection system.展开更多
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams sh...Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.展开更多
The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its l...The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.展开更多
An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensi...An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal AI alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG AI and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal AI alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal AI alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal AI alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.展开更多
The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffe...The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11072052)the National High Technology Research and Development Program of China (863 Program,Grant No.2006AA09A109-3)
文摘This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.
文摘The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
文摘The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is developed,in whichbending-stretching coupling effect is taken into account.An orthotropic equivalentuniaxial stress-strain constitutive model of concrete is used.A program is worked out andused to calculate two reinforced concrete slabs.The results of calculation are in goodconformity with the corresponding test results.In addition,the influence of tension stif-fening effect of cracked concrete on the results of calculation is discussed.
文摘In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
基金the Fundamental Research Funds for the Central Universities under Grant No.HEUCFZ1125National Natural Science Foundation of China under Grant No.10972064
文摘The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
基金the National Natural Science Foundation of China(No.11501449 and 11471262)the Center for high performance computing of Northwestern Polytechnical University.
文摘In this paper,we discuss the numerical accuracy of asymptotic homogenization method(AHM)and multiscale finite element method(MsFEM)for periodic composite materials.Through numerical calculation of the model problems for four kinds of typical periodic composite materials,the main factors to determine the accuracy of first-order AHM and second-order AHM are found,and the physical interpretation of these factors is given.Furthermore,the way to recover multiscale solutions of first-order AHM and MsFEM is theoretically analyzed,and it is found that first-order AHM and MsFEM provide similar multiscale solutions under some assumptions.Finally,numerical experiments verify that MsFEM is essentially a first-order multiscale method for periodic composite materials.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
文摘The Finite Element Limiting Analysis Method(LELAM) has the advantage of combining a numerical analysis method with traditional limiting equilibrium methods.It is particularly applicable to the analysis and design of geotechnical engineering.In the early 20th century,FELAM has been developed vigorously in domestic geotechnical engineering over international common finite element procedures.It has made great achievements in basic theory research and computational precision,thus broadening the application fields in practical projects.In order to gradually make innovations in geotechnical design methods,some of our research results are presented,mainly including geotechnical safety factor definitions,the principles for use of the method concerned,the overall failure criterion,the deduction and selection of the yield criterion,and the measurement to improve the computational precision,etc..The application field has been broadened from two-dimensional to three-dimensional,from soil slope to jointed rock slope and foundation,from stable seepage to non-stable seepage,from slope and foundation to tunnel.This method has also been used in search of many hidden sliding surfaces of complex landslides,conducting the structural support design considering the interaction between the soil and the structure,and computing simulation foundation bearing plates load tests,etc..
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61273164 and 61034005)the National High Technology Research and Development Program of China (Grant No. 2012AA040104)the Fundamental Research Funds for the Central Universities, China (Grant No. N100104102)
文摘With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this paper, the structure and principle of magnetic flux leakage (MFL) in-line inspection system is introduced first. Besides, a mathematic model of the system according to the ampere circuit rule, flux continuity theorem, and column coordinate transform is built, and the magnetic flux density in every point of space is calculated based on the theory of finite element analysis. Then we analyze and design the disposition of measurement section probes and sensors combining both three-axis MFL in-line inspection and multi-sensor fusion technology. Its advantage is that the three-axis changes of magnetic flux leakage field are measured by the multi-probes at the same time, so we can determine various defects accurately. Finally, the theory of finite element analysis is used to build a finite element simulation model, and the relationship between defects and MFL inspection signals is studied. Simulation and experiment results verify that the method not only enhances the detection ability to different types of defects but also improves the precision and reliability of the inspection system.
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
文摘Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.
文摘The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.
基金supported by the Office of Naval Re-search, contract N00014-03-C-0163, monitored by Rod Pe-terson.
文摘An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal AI alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG AI and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal AI alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal AI alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal AI alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.
文摘The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.