期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
DEFORMATION ANALYSIS OF SHEET METAL SINGLE-POINT INCREMENTAL FORMING BY FINITE ELEMENT METHOD SIMULATION 被引量:3
1
作者 MA Linwei MO Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期31-35,共5页
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a... Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger. 展开更多
关键词 Sheet metal incremental forming Deformation finite element method(FEM) Numerical simulation
下载PDF
A Study on the Computer Numerical Simulation of Radial Keratotomy by Finite Element Method
2
《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第4期120-121,共2页
关键词 simulation A Study on the Computer Numerical simulation of Radial Keratotomy by finite element method
下载PDF
Numerical simulation of influences of the earth medium's lateral heterogeneity on co- and post-seismic deformation 被引量:3
3
作者 Xu Bei Xu Caijun 《Geodesy and Geodynamics》 2015年第1期46-54,共9页
Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method ar... Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field. 展开更多
关键词 finite element method Medium s lateral heterogeneity Numerical simulation Co-seismic deformation Post-seismic deformation Geod
下载PDF
NUMERICAL ANALYSIS AND COMPUTER SIMULATION OF FORMATION OF RESIDUAL STRESSES IN GRINDING PROCESS
4
作者 Hu Huanan Zhou Zehua Chen Chengzhou South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1997年第4期2-8,65,共0页
A theoretical method of solution for residual stresses in ground surface is developed. A new model for analysing the residual stresses is proposed, and a finite element analysing software for solution of two dimensio... A theoretical method of solution for residual stresses in ground surface is developed. A new model for analysing the residual stresses is proposed, and a finite element analysing software for solution of two dimension thermal elasto plastic problem with moving loading is developed. Numerical analysis and computer simulation of formation of residual stresses in grinding process are conducted by means of this software. The theoretical basis is provided for controlling residual stresses of machined surface, and for precisely machining. 展开更多
关键词 Grinding Residual stress finite element method Computer simulation
全文增补中
Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling 被引量:3
5
作者 Jia-wei Ma Cui-ping Yang +2 位作者 Zhen-hua Zheng Kang-sheng Zhang Wen-yu Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第11期1302-1314,共13页
In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFOR... In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFORM-3D software, we developed a rigid plastic finite element model for a CWR-processed rear axle tube, coupled with thermomechanical and microstructural aspects of workpieces. Using the developed model, we investigated the microstructural evolution of the CWR process. Also, the influence of numerous parameters, including the initial temperature of workpieces, the roll speed, the forming angle, and the spreading angle, on the grain size and the grain-size uniformity of the rolled workpieces was analyzed. The numerical simulation was verified through rolling and metallographic experiments. Good agreement was obtained between the calculated and experimental results, which demonstrated the reliability of the model constructed in this work. 展开更多
关键词 microstructural evolution grain size cross wedge rolling finite element method computer simulation tubes
下载PDF
Numerical modeling of thermally-induced fractures in a large rock salt mass
6
作者 D.T. Ngo FL. Pellet 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期844-855,共12页
Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling exp... Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling experiment performed in an underground rock salt mine. The theory of fracture mechanics was embedded in the extended finite element code used. The results provide reliable information on fracture location and fracture geometry. Moreover, the timing of the fracture onset, as well as the stress redis- tribution due to fracture propagation, is highlighted. The conclusions of this numerical approach can be used to improve the design of rock salt caverns in order to guarantee their integrity in terms of both their tightness and stability. 展开更多
关键词 Fracture mechanics Thermal loading Extended finite element method (XFEM)simulation Rock salt
下载PDF
Experiment and Simulation for Rolling of Diamond–Cu Composites 被引量:1
7
作者 Yun-Long Wang Kai-Kun Wang +1 位作者 Yu-Wei Wang Guang-Chen Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第8期791-800,共10页
We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particl... We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particles were combined with Cu matrix by composite rolling. The morphology and element distribution of the interface between diamond and Cu were determined by scanning electron microscopy and energy-dispersive spectrometer. Finite element method (FEM) simulation was used to analyze the rolling process associated with experiment by DEFORM-3D. The final experimental results showed that homogeneous distribution of diamond particles could be observed in the center layer of the composites. According to the contrast experiments, the sample, whose diamond particle size is 0.12-0.15 mm and thickness of pre-rolling is 1.2 mm, showed relatively complete morphologies and homogeneous distribution. Experimental results indicated a poor efficacy of excessive rolling reduction. The thermal conductivity of the composites is about 453 W (m K)-1 by theoretical calculation. For FEM simulation, roiling strain and temperature field of the composites were simulated by DEFORM-3D. Simulation results were interpreted, and numerical results verified the reliability of the model. The simulation predicted that the local area of large strain, indicative of the strain along the thickness direction, could be intensified by adding diamond particles. 展开更多
关键词 Diamond/Cu composites Powder-in-tube technique (PIT) ROLLING finite element method(FEM) simulation
原文传递
Surface micro/nanostructure evolution of Au-Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications 被引量:5
8
作者 Hongmei Qian Meng Xu +7 位作者 Xiaowei Li Muwei Ji Lei Cheng Anwer Shoaib Jiajia Liu Lan Jiang Hesun Zhu Jiatao Zhang 《Nano Research》 SCIE EI CAS CSCD 2016年第3期876-885,共10页
This study reports the controllable surface roughening of Au-Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuC14 in an aqueous medium. With a combin... This study reports the controllable surface roughening of Au-Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuC14 in an aqueous medium. With a combination of experimental evidence and finite element method (FEM) simulations, improved electromagnetic field (E-field) enhancement around the surface-roughened Au- Ag nanoplates and tunable light absorption in the near-infrared (NIR) region (-800-1,400 nm) are achieved by the synergistic effects of the localized surface plasmon resonance (LSPR) from the maintained triangular shape, the controllable Au-Ag alloy composition, and the increased surface roughness. The NIR light extinction enables an active photothermal effect as well as a high photothermal conversion efficiency (78.5%). The well-maintained triangular shape, surface- roughened evolutions of both micro- and nanostructures, and tunable NIR surface plasmon resonance effect enable potential applications of the Au-Ag alloy nanoplates in surface-enhanced Raman spectroscopic detection of biomolecules through 785-nm laser excitation. 展开更多
关键词 Au-Ag alloy nanoplates surface roughening finite element method(FEM) simulation photothermal surface enhanced Ramanscattering (SERS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部