In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ...The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method an...An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.展开更多
In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-...In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the n...In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the nonconforming EQ_(1)^(rot) element.In this approach,the original nonlinear system is solved on the coarse mesh through the Newton iteration method,and then the linear system is computed on the fine mesh with Taylor’s expansion.Based on the high accuracy results of the chosen element,the uniform superclose and superconvergent estimates in the broken H^(1)-norm are derived,which are independent of the negative powers of the perturbation parameter appeared in the considered problem.Numerical results illustrate that the computing cost of the proposed two-grid method is much less than that of the conventional Galerkin MFEM without loss of accuracy.展开更多
In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time g...In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.展开更多
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx...The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
In this paper,we consider numerical approximation of a class of nonlinear backward stochastic partial differential equations(BSPDEs).By using finite element methods in the physical space domain and the Euler method in...In this paper,we consider numerical approximation of a class of nonlinear backward stochastic partial differential equations(BSPDEs).By using finite element methods in the physical space domain and the Euler method in the time domain,we propose a spatial finite element semi-discrete scheme and a spatio-temporal full discrete scheme for solving the BSPDEs.Errors of the schemes are rigorously analyzed and theoretical error estimates with convergence rates are obtained.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is stu...An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.展开更多
In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation...In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results.展开更多
In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the orde...In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the order k≤1 RaviartThomas mixed finite element spaces and the control is approximated by piecewise constant element.We derive a posteriori error estimates for the coupled state and control approximations.A numerical example is presented in confirmation of the theory.展开更多
In this paper,we investigate the superconvergence property and the L∞-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint.The state and co-state are a...In this paper,we investigate the superconvergence property and the L∞-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint.The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions.We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions.Moreover,we derive L∞-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions.Finally,some numerical examples are given to demonstrate the theoretical results.展开更多
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
基金This work was supported in part by the National Science Foundation under grant DMS-1620288。
文摘The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.
基金This work is supported by National Science Foundation of China,Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009).
文摘In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金supported by the National Natural Science Foundation of China(Grant Nos.12201640,12071443).
文摘In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the nonconforming EQ_(1)^(rot) element.In this approach,the original nonlinear system is solved on the coarse mesh through the Newton iteration method,and then the linear system is computed on the fine mesh with Taylor’s expansion.Based on the high accuracy results of the chosen element,the uniform superclose and superconvergent estimates in the broken H^(1)-norm are derived,which are independent of the negative powers of the perturbation parameter appeared in the considered problem.Numerical results illustrate that the computing cost of the proposed two-grid method is much less than that of the conventional Galerkin MFEM without loss of accuracy.
基金The work is supported by the Guangxi Natural Science Foundation[Grant Numbers 2018GXNSFBA281020,2018GXNSFAA138121]the Doctoral Starting up Foundation of Guilin University of Technology[Grant Number GLUTQD2016044].
文摘In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.
文摘The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金supported by the Science Challenge Project(No.TZ2018001)by National Key R&D Plan(No.2018YFA0703903)by the National Natural Science Foundations of China(under Grants Nos.11901565,11571206,11831010 and 11871068).
文摘In this paper,we consider numerical approximation of a class of nonlinear backward stochastic partial differential equations(BSPDEs).By using finite element methods in the physical space domain and the Euler method in the time domain,we propose a spatial finite element semi-discrete scheme and a spatio-temporal full discrete scheme for solving the BSPDEs.Errors of the schemes are rigorously analyzed and theoretical error estimates with convergence rates are obtained.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
文摘An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.
基金W.F.Shen was supported by National Natural Science Foundation of China(Grant:11326226)Nature Science Foundation of Shandong Province(No.ZR2012GM018)D.P.Yang partially was supported by National Natural Science Foundation of China,Grant:11071080.
文摘In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results.
基金supported by Guangdong Provincial‘Zhujiang Scholar Award Project’National Science Foundation of China 10671163+2 种基金the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department 06A069Hunan Provincial Innovation Foundation for Postgraduate S2008yjscx04。
文摘In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the order k≤1 RaviartThomas mixed finite element spaces and the control is approximated by piecewise constant element.We derive a posteriori error estimates for the coupled state and control approximations.A numerical example is presented in confirmation of the theory.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)the Foundation for High-level Talent Faculty of Guangdong Provincial University,and Hunan Provincial Innovation Foundation for Postgraduate CX2010B247.
文摘In this paper,we investigate the superconvergence property and the L∞-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint.The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions.We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions.Moreover,we derive L∞-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions.Finally,some numerical examples are given to demonstrate the theoretical results.