A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness...An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara...Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.展开更多
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat...In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.展开更多
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre...The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.展开更多
In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the...In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the traditional methods used in chemical engineering becauseof the steep gradients of concentration and temperature.But,these difficulties are easy to be over-comed when the FEM is used.The integraded steps of solving this kind of problems by the FEMare presented in this paper.By applying the FEM to the two actual examples,the conclusion can bereached that the FEM has the advantages of simplicity and good accuracy.展开更多
A multinonlinear boundary element method is established dealing with elasto plastic finite deformation contact problem, and it is employed to analysis rolling process. With rollers as elastic bodies, workpieces as el...A multinonlinear boundary element method is established dealing with elasto plastic finite deformation contact problem, and it is employed to analysis rolling process. With rollers as elastic bodies, workpieces as elastio plastic bodies, rolling problem can be viewed as a frictional elasto plastic contact problem. With fewer assumptions in the simulation of the rolling process, a novel and accurate method is proposed for analysis of rolling problems.展开更多
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl...The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.展开更多
Large-scale slope destabilization could be aggravated due to swift urbanization and ever-rising demands of geoengineering projects such as dams,tunnels,bridges and widening roads.National Highway-58 connects Delhi to ...Large-scale slope destabilization could be aggravated due to swift urbanization and ever-rising demands of geoengineering projects such as dams,tunnels,bridges and widening roads.National Highway-58 connects Delhi to Badrinath in India,which passes through complex geomorphological and geological terrain and often encounters cut slopes susceptible to slope failures.In the present investigation,a detailed geotechnical appraisal is conducted along the road cut slopes from Rishikesh to Devprayag in the Himalayas.Twenty vulnerable road cut slopes were demarcated for detailed slope stability analysis using Phase2D finite element modeling simulator.Nonlinear generalized Hoek-Brown(GHB)criterion was adopted for stability analyses.Out of 20 slopes,five slopes(S6,S7,S18,S19 and S20)are unstable with factor of safety(FoS)less than or equal to 1,and thus needs immediate attention.The FoS values of four slopes(S2,S9,S13 and S17)lie between 1 and 1.3,i.e.marginally stable,and slopes S1,S3,S4,S5,S8,S10,Sll,S12,S14,S15 and S16 are stable.Mohr-Coulomb(MC)criterion was also adopted to compare the slope stability analysis with GHB criterion.The FoS calculated from GHB criterion is close to that using MC criterion for lower values of FoS whereas for higher values,the difference is marked.For the jointed rock in the Himalayan region,the nonlinear GHB criterion gives better results as compared to MC criterion and matches with the prevailing field conditions.Accordingly,some suggestions are proposed to strengthen the stability of cut slopes.展开更多
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted ...Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
A comprehensive experimental and numerical study of solder joints for plastic leaded chip carrier (PLCC) 84-Pin, 1.27 mm pitch was carried out. The reliability of solder joints was assessed through accelerated thermal...A comprehensive experimental and numerical study of solder joints for plastic leaded chip carrier (PLCC) 84-Pin, 1.27 mm pitch was carried out. The reliability of solder joints was assessed through accelerated thermal cycling at the temperature range of - 55℃-125℃. The samples were taken out to observe the evolution in microstructure, such as grain coarsening, initiation and propagation of cracks. It was found that the Pb-rich phases segregated gradually and formed a continuous layer adjacent to the intermetallic compound (IMC) layer with increasing the number of thermal cycles, resulting in cracks near the solder/lead interface. The response of stress and strain was studied using nonlinear finite element method (FEM), and the results agreed well with the experimental data.展开更多
Coronary stent is used to treat stenosis artery by recovering the luminal diameter of artery and maintaining the normal blood flow. The geometry of coronary stent is an important factor for the radial force. In this s...Coronary stent is used to treat stenosis artery by recovering the luminal diameter of artery and maintaining the normal blood flow. The geometry of coronary stent is an important factor for the radial force. In this study,the relation between the radial force of stent and crown angle was discussed. The result showed that there was no particular rule between the radial force of stent and the crown angle. The maximum radial force of stent was obtained when the crown angle was 50. 04° and the minimum radial force was got when the crown angle was 75°.展开更多
The effect of dust particles on electric contacts and a hazardous size range of hard dust particles using a rigid model were discussed before. As further research, elastic-plastic model of finite element analysis was ...The effect of dust particles on electric contacts and a hazardous size range of hard dust particles using a rigid model were discussed before. As further research, elastic-plastic model of finite element analysis was established in this work, which is closer to real condition. In this work, the behavior of large size and small size particles, and the influence of particles hardness were investigated. The calculating result of small-size particles presents a general hazardous size coefficient for different contact surface morphology; for large-size particles, it presents a hazardous size coefficient for complicated composition of the dust. And the effect of the dust shape is also discussed.展开更多
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金supported by the Innovation Training Project for Students in NUAA(No.2016C-X0010-129)the Key Laboratory of Aircraft Environment Control and Life Support(NUAA),Ministry of Industry and Information Technology
文摘An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
基金National Natural Science Foundation of China(No.51674280,51774308,51704033,51722406,51950410591)Shandong Provincial Natural Science Foundation(ZR2019JQ21,JQ201808)+3 种基金the Fundamental Research Funds for the Central Universities(No.20CX02113A)National Science and Technology Major Project(2016ZX05014-000407)Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R69)PetroChina Innovation Foundation(No.2018D-5007-0210)。
文摘Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.
文摘In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.
基金Supported by the Key Program of National Natural Science Foundation of China(No.51138001)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51121005)+2 种基金the Fundamental Research Funds for the Central Universities(DUT13LK16)the Young Scientists Fund of National Natural Science Foundation of China(No.51109134)China Postdoctoral Science Foundation(No.2011M500814)
文摘The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
基金Project financially supported by scientific research foundation coferring to Ph.D.
文摘In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the traditional methods used in chemical engineering becauseof the steep gradients of concentration and temperature.But,these difficulties are easy to be over-comed when the FEM is used.The integraded steps of solving this kind of problems by the FEMare presented in this paper.By applying the FEM to the two actual examples,the conclusion can bereached that the FEM has the advantages of simplicity and good accuracy.
文摘A multinonlinear boundary element method is established dealing with elasto plastic finite deformation contact problem, and it is employed to analysis rolling process. With rollers as elastic bodies, workpieces as elastio plastic bodies, rolling problem can be viewed as a frictional elasto plastic contact problem. With fewer assumptions in the simulation of the rolling process, a novel and accurate method is proposed for analysis of rolling problems.
基金supported by the National Natural Science Foundation of China(Nos.51378293,51078199,50678093,and 50278046)the Program for Changjiang Scholars and the Innovative Research Team in University of China(No.IRT00736)
文摘The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.
基金NRDMS Division,Department of Science and Technology,Government of India for providing financial assistance for field investigations.
文摘Large-scale slope destabilization could be aggravated due to swift urbanization and ever-rising demands of geoengineering projects such as dams,tunnels,bridges and widening roads.National Highway-58 connects Delhi to Badrinath in India,which passes through complex geomorphological and geological terrain and often encounters cut slopes susceptible to slope failures.In the present investigation,a detailed geotechnical appraisal is conducted along the road cut slopes from Rishikesh to Devprayag in the Himalayas.Twenty vulnerable road cut slopes were demarcated for detailed slope stability analysis using Phase2D finite element modeling simulator.Nonlinear generalized Hoek-Brown(GHB)criterion was adopted for stability analyses.Out of 20 slopes,five slopes(S6,S7,S18,S19 and S20)are unstable with factor of safety(FoS)less than or equal to 1,and thus needs immediate attention.The FoS values of four slopes(S2,S9,S13 and S17)lie between 1 and 1.3,i.e.marginally stable,and slopes S1,S3,S4,S5,S8,S10,Sll,S12,S14,S15 and S16 are stable.Mohr-Coulomb(MC)criterion was also adopted to compare the slope stability analysis with GHB criterion.The FoS calculated from GHB criterion is close to that using MC criterion for lower values of FoS whereas for higher values,the difference is marked.For the jointed rock in the Himalayan region,the nonlinear GHB criterion gives better results as compared to MC criterion and matches with the prevailing field conditions.Accordingly,some suggestions are proposed to strengthen the stability of cut slopes.
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
基金Project supported by the National Natural Science Foundation of China (No.50278046)
文摘Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
文摘A comprehensive experimental and numerical study of solder joints for plastic leaded chip carrier (PLCC) 84-Pin, 1.27 mm pitch was carried out. The reliability of solder joints was assessed through accelerated thermal cycling at the temperature range of - 55℃-125℃. The samples were taken out to observe the evolution in microstructure, such as grain coarsening, initiation and propagation of cracks. It was found that the Pb-rich phases segregated gradually and formed a continuous layer adjacent to the intermetallic compound (IMC) layer with increasing the number of thermal cycles, resulting in cracks near the solder/lead interface. The response of stress and strain was studied using nonlinear finite element method (FEM), and the results agreed well with the experimental data.
基金Key Project of Medicine,Science and Technical Committee,China(No.10411953300)
文摘Coronary stent is used to treat stenosis artery by recovering the luminal diameter of artery and maintaining the normal blood flow. The geometry of coronary stent is an important factor for the radial force. In this study,the relation between the radial force of stent and crown angle was discussed. The result showed that there was no particular rule between the radial force of stent and the crown angle. The maximum radial force of stent was obtained when the crown angle was 50. 04° and the minimum radial force was got when the crown angle was 75°.
文摘The effect of dust particles on electric contacts and a hazardous size range of hard dust particles using a rigid model were discussed before. As further research, elastic-plastic model of finite element analysis was established in this work, which is closer to real condition. In this work, the behavior of large size and small size particles, and the influence of particles hardness were investigated. The calculating result of small-size particles presents a general hazardous size coefficient for different contact surface morphology; for large-size particles, it presents a hazardous size coefficient for complicated composition of the dust. And the effect of the dust shape is also discussed.