On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an exampl...On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.展开更多
The computational efficiency of numerical solution of linearalgebraic equations in finite elements can be improved in two ways.One is to decrease the fill-in numbers, which are new non-ze- ronumbers in the matrix of g...The computational efficiency of numerical solution of linearalgebraic equations in finite elements can be improved in two ways.One is to decrease the fill-in numbers, which are new non-ze- ronumbers in the matrix of global stiffness generated during theprocess of elimination. The other is to reduce the computationaloperation of multiplying a real number by zero. Based on the factthat the order of elimination can determine how many fill-in numbersshould be generated, we present a new method for optimization ofnumbering nodes. This method is quite different from bandwidthoptimiza- tion. Fill-in numbers can be decreased in a large scale bythe use of this method. The bi-factorization method is adopted toavoid multiplying real numbers by zero. For large scale finiteelement analysis, the method presented in this paper is moreefficient than the traditional LDLT method.展开更多
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted ...Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
To obtain the fundamental solution of soil has become the key problem for the semi-analytical and semi-numerical (SASN) method in analyzing plate on layered soil. By applying axisymmetric finite element method (FEM),a...To obtain the fundamental solution of soil has become the key problem for the semi-analytical and semi-numerical (SASN) method in analyzing plate on layered soil. By applying axisymmetric finite element method (FEM),an expression relating the surface settlement and the reaction of the layered soil can be obtained. Such a reaction can be treated as load acting on the applied external load. Having the plate modelled by four-node elements,the governing equation of the plate can be formed and solved. In this case, the fundamental solution can be introduced into the global soil stiffness matrix and five-node or nine-node element soil stiffness matrix.The existing commercial FEM software can be used to solve the fundamental solution of soil, which can bypass the complicated formula derivation and boasts high computational efficiency as well.展开更多
In this paper, a parallel algorithm with iterative form for solving finite element equation is presented. Based on the iterative solution of linear algebra equations, the parallel computational steps are introduced in...In this paper, a parallel algorithm with iterative form for solving finite element equation is presented. Based on the iterative solution of linear algebra equations, the parallel computational steps are introduced in this method. Also by using the weighted residual method and choosing the appropriate weighting functions, the finite element basic form of parallel algorithm is deduced. The program of this algorithm has been realized on the ELXSI-6400 parallel computer of Xi'an Jiaotong University. The computational results show the operational speed will be raised and the CPU time will be cut down effectively. So this method is one kind of effective parallel algorithm for solving the finite element equations of large-scale structures.展开更多
Recently, pH-sensitive hydrogels have been utilized in the diverse applications including sensors, switches, and actuators. In order to have continuous stress and deformation ?elds, a new semi-analytical approach is d...Recently, pH-sensitive hydrogels have been utilized in the diverse applications including sensors, switches, and actuators. In order to have continuous stress and deformation ?elds, a new semi-analytical approach is developed to predict the swelling induced?nite bending for a functionally graded(FG) layer composed of a pH-sensitive hydrogel,in which the cross-link density is continuously distributed along the thickness direction under the plane strain condition. Without considering the intermediary virtual reference,the initial state is mapped into the deformed con?guration in a circular shape by utilizing a total deformation gradient tensor stemming from the inhomogeneous swelling of an FG layer in response to the variation of the pH value of the solvent. To enlighten the capability of the presented analytical method, the ?nite element method(FEM) is used to verify the accuracy of the analytical results in some case studies. The perfect agreement con-?rms the accuracy of the presented method. Due to the applicability of FG pH-sensitive hydrogels, some design factors such as the semi-angle, the bending curvature, the aspect ratio, and the distributions of deformation and stress ?elds are studied. Furthermore, the tangential free-stress axes are illustrated in deformed con?guration.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
A large number of problems in engineering can be formulated as the optimization of certain functionals. In this paper, we present an algorithm that uses the augmented Lagrangian methods for finding numerical solutions...A large number of problems in engineering can be formulated as the optimization of certain functionals. In this paper, we present an algorithm that uses the augmented Lagrangian methods for finding numerical solutions to engineering problems. These engineering problems are described by differential equations with boundary values and are formulated as optimization of some functionals. The algorithm achieves its simplicity and versatility by choosing linear equality relations recursively for the augmented Lagrangian associated with an optimization problem. We demonstrate the formulation of an optimization functional for a 4th order nonlinear differential equation with boundary values. We also derive the associated augmented Lagrangian for this 4th order differential equation. Numerical test results are included that match up with well-established experimental outcomes. These numerical results indicate that the new algorithm is fully capable of producing accurate and stable solutions to differential equations.展开更多
An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion...An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion of solid kerogen in oil shale to liquid oil through </span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"> pyrolysis by radio frequency heating. Radio frequency heating as a method of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis represents a tenable enhanced oil recovery method, whereby an applied electrical potential difference across a target oil shale formation is converted to thermal energy, heating the oil shale and causing it to liquify to become liquid oil. A number of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis methods are reviewed but the focus of this work is on the verification of the TPME numerical framework to model radio frequency heating as a potential dielectric heating process for enhanced oil recovery.</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">Very few studies exist which describe production from oil shale;furthermore, there are none that specifically address the verification of numerical models describing radio frequency heating. As a result, the Method of Manufactured Solutions (MMS) was used as an analytical verification method of the developed numerical code. Results show that the multiphysics finite element framework was adequately modeled enabling the simulation of kerogen conversion to oil as a part of the analysis of a TPME numerical model.展开更多
The phenomena of magneto-hydrodynamic natural convection in a two-dimensional semicircular top enclosure with triangular obstacle in the rectangular cavity were studied numerically. The governing differential equation...The phenomena of magneto-hydrodynamic natural convection in a two-dimensional semicircular top enclosure with triangular obstacle in the rectangular cavity were studied numerically. The governing differential equations are solved by using the most important method which is finite element method (weighted-residual method). The top wall is placed at cold T<sub>c</sub> and bottom wall is heated T<sub>h</sub>. Here the sidewalls of the cavity assumed adiabatic. Also all the wall are occupied to be no-slip condition. A heated triangular obstacle is located at the center of the cavity. The study accomplished for Prandtl number Pr = 0.71;the Rayleigh number Ra = 10<sup>3</sup>, 10<sup>5</sup>, 5 × 10<sup>5</sup>, 10<sup>6</sup> and for Hartmann number Ha = 0, 20, 50, 100. The results represent the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.展开更多
The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed w...The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects;2) upper-bound solutions;3) accurate solutions and higher convergence rates;4) insensitivity to mesh distortion;5) Jacobian?free;6) volumetric-locking-free;and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on Al-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.展开更多
A numerical solution of the weight function for a two-electrode electromagnetic flowmeter was proposed. The solution was obtained by using the finite element method based on the basic equation of a traditional two-ele...A numerical solution of the weight function for a two-electrode electromagnetic flowmeter was proposed. The solution was obtained by using the finite element method based on the basic equation of a traditional two-electrode electromagnetic flowmeter. The two-dimensional distribution of the weight function of the electromagnetic flowmeter obtained was verified by the analytical solution. Three-dimensional distribution of the weight function was also presented in the paper. It can be employed to analyze the sensitivity and linearity of the electromagnetic flowmeter with non-uniform magnetic field, and even to assist the design of the excitation coil pair.展开更多
A number of phenomena and processes in geosciences can be summarized by second order partial differential equations. The major numerical methods for their solution include the classical finite difference method and th...A number of phenomena and processes in geosciences can be summarized by second order partial differential equations. The major numerical methods for their solution include the classical finite difference method and the finite element method newly developed in the last two or three decades. Since 1977 the author has proved that for the Laplace and Poisson equations, these two methods are identical and are different only in the process of formulation. For transient problems, such as heat conduction in the earth and the groundwater and oil-gas unsteady flow in porous media, there are some differences in resulting linear algebraic euqations. In general, two methods give similar results, but when the time step is decreased to some extent, the resulting algebraic equation will be consistent with the anti-heat conduction equation rather than the original heat conduction equation. This is the reason why unrealistic potentials are produced by the finite element method. Such a problem can be overcome by using the lumped mass procedure, but it makes the two methods identical again.To improve the traditional finite difference method, it is quite desirable to introduce the common practice of the finite element method to define the parameters in elements rather than on nodes.展开更多
We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k · p method. Numerical results including piezoelectricity, electron ...We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k · p method. Numerical results including piezoelectricity, electron and hole levels, as well as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.展开更多
Various mixed formulations of the finite element method (FEM) yield matrix equations involving zero diagonal entries. They are then dealt with by a penaltymethod so that they become non-zero but near zero terms. Howev...Various mixed formulations of the finite element method (FEM) yield matrix equations involving zero diagonal entries. They are then dealt with by a penaltymethod so that they become non-zero but near zero terms. However, the penalty has tobe chosen properly. If it is too large, the matrix equation may become ill-conditioned. Onthe other hand, the matrix equation may give incorrect answer if the penalty is too small.In non-linear regime, the difficulty is more serious because the magnitude order of the matrix varies considerably in the entire loading history. The paper suggests an iteration solution and applies it to non-linear FEM of rubber-like hyper-elasticity. This type of analysisis highly non-linear both in physics and in geometry as well as the strong constraint of incompressibility. The iteration solution is demonstrated to possess super precision and excellent convergence characteristics.展开更多
A bulging intervertebral disc (IVD) occurs when pressure on a spinal disc damages the once healthy disc,causing it to compress or change its normal shape.In medicine,most attention has been paid clinically to diagnosi...A bulging intervertebral disc (IVD) occurs when pressure on a spinal disc damages the once healthy disc,causing it to compress or change its normal shape.In medicine,most attention has been paid clinically to diagnosis of and treatment for such problems,which little effect has been made to understand such issues from a mechanics perspective,i.e.,the bulging deformation of the soft IVD induced by excessive compressive load.We report herein a simple elasticity solution to understand the bulging disc issue.For simplicity,the soft IVD is modeled as an incompressible circular composite layer consisting of an inner nucleus and outer annulus,sandwiched between two vertebral segments which are much stiffer than the IVD and can be treated as rigid bodies.Without adopting any assumptions regarding prescribed displacements or stresses,we obtained the stress and displacement fields within the composite layer when a certain compressive stain is applied via an asymptotic approach.This asymptotic approach is very simple and accurate enough for prediction of the bugling profile of the IVD.We also performed finite-element modeling (FEM) to validate our solutions;the predicted stress and displacement fields inside the composite are in good agreement with the FEM results.展开更多
With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equatio...With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.展开更多
Adaptive finite element methods for optimization problems for second order linear el- liptic partial differential equations subject to pointwise constraints on the l2-norm of the gradient of the state are considered. ...Adaptive finite element methods for optimization problems for second order linear el- liptic partial differential equations subject to pointwise constraints on the l2-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.Mathematics subject classification: 65N30, 90C46, 65N50, 49K20, 49N15, 65K10.展开更多
This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilin...This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilinear elliptic equations. This strategy not only grently reduces the expensive computation, but also is successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems with non-odd nonlinearity on some convex or nonconvex domains. Numerical solutions illustrated by their graphics for visualization will show the efficiency of the approach.展开更多
文摘On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.
文摘The computational efficiency of numerical solution of linearalgebraic equations in finite elements can be improved in two ways.One is to decrease the fill-in numbers, which are new non-ze- ronumbers in the matrix of global stiffness generated during theprocess of elimination. The other is to reduce the computationaloperation of multiplying a real number by zero. Based on the factthat the order of elimination can determine how many fill-in numbersshould be generated, we present a new method for optimization ofnumbering nodes. This method is quite different from bandwidthoptimiza- tion. Fill-in numbers can be decreased in a large scale bythe use of this method. The bi-factorization method is adopted toavoid multiplying real numbers by zero. For large scale finiteelement analysis, the method presented in this paper is moreefficient than the traditional LDLT method.
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (No.50278046)
文摘Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
文摘To obtain the fundamental solution of soil has become the key problem for the semi-analytical and semi-numerical (SASN) method in analyzing plate on layered soil. By applying axisymmetric finite element method (FEM),an expression relating the surface settlement and the reaction of the layered soil can be obtained. Such a reaction can be treated as load acting on the applied external load. Having the plate modelled by four-node elements,the governing equation of the plate can be formed and solved. In this case, the fundamental solution can be introduced into the global soil stiffness matrix and five-node or nine-node element soil stiffness matrix.The existing commercial FEM software can be used to solve the fundamental solution of soil, which can bypass the complicated formula derivation and boasts high computational efficiency as well.
基金This work has been carried out as of a research project which has been supported by the National Structural Strength & Vibration Laboratory of Xi'an Jiaotong University with National Fund
文摘In this paper, a parallel algorithm with iterative form for solving finite element equation is presented. Based on the iterative solution of linear algebra equations, the parallel computational steps are introduced in this method. Also by using the weighted residual method and choosing the appropriate weighting functions, the finite element basic form of parallel algorithm is deduced. The program of this algorithm has been realized on the ELXSI-6400 parallel computer of Xi'an Jiaotong University. The computational results show the operational speed will be raised and the CPU time will be cut down effectively. So this method is one kind of effective parallel algorithm for solving the finite element equations of large-scale structures.
文摘Recently, pH-sensitive hydrogels have been utilized in the diverse applications including sensors, switches, and actuators. In order to have continuous stress and deformation ?elds, a new semi-analytical approach is developed to predict the swelling induced?nite bending for a functionally graded(FG) layer composed of a pH-sensitive hydrogel,in which the cross-link density is continuously distributed along the thickness direction under the plane strain condition. Without considering the intermediary virtual reference,the initial state is mapped into the deformed con?guration in a circular shape by utilizing a total deformation gradient tensor stemming from the inhomogeneous swelling of an FG layer in response to the variation of the pH value of the solvent. To enlighten the capability of the presented analytical method, the ?nite element method(FEM) is used to verify the accuracy of the analytical results in some case studies. The perfect agreement con-?rms the accuracy of the presented method. Due to the applicability of FG pH-sensitive hydrogels, some design factors such as the semi-angle, the bending curvature, the aspect ratio, and the distributions of deformation and stress ?elds are studied. Furthermore, the tangential free-stress axes are illustrated in deformed con?guration.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘A large number of problems in engineering can be formulated as the optimization of certain functionals. In this paper, we present an algorithm that uses the augmented Lagrangian methods for finding numerical solutions to engineering problems. These engineering problems are described by differential equations with boundary values and are formulated as optimization of some functionals. The algorithm achieves its simplicity and versatility by choosing linear equality relations recursively for the augmented Lagrangian associated with an optimization problem. We demonstrate the formulation of an optimization functional for a 4th order nonlinear differential equation with boundary values. We also derive the associated augmented Lagrangian for this 4th order differential equation. Numerical test results are included that match up with well-established experimental outcomes. These numerical results indicate that the new algorithm is fully capable of producing accurate and stable solutions to differential equations.
文摘An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion of solid kerogen in oil shale to liquid oil through </span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"> pyrolysis by radio frequency heating. Radio frequency heating as a method of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis represents a tenable enhanced oil recovery method, whereby an applied electrical potential difference across a target oil shale formation is converted to thermal energy, heating the oil shale and causing it to liquify to become liquid oil. A number of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis methods are reviewed but the focus of this work is on the verification of the TPME numerical framework to model radio frequency heating as a potential dielectric heating process for enhanced oil recovery.</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">Very few studies exist which describe production from oil shale;furthermore, there are none that specifically address the verification of numerical models describing radio frequency heating. As a result, the Method of Manufactured Solutions (MMS) was used as an analytical verification method of the developed numerical code. Results show that the multiphysics finite element framework was adequately modeled enabling the simulation of kerogen conversion to oil as a part of the analysis of a TPME numerical model.
文摘The phenomena of magneto-hydrodynamic natural convection in a two-dimensional semicircular top enclosure with triangular obstacle in the rectangular cavity were studied numerically. The governing differential equations are solved by using the most important method which is finite element method (weighted-residual method). The top wall is placed at cold T<sub>c</sub> and bottom wall is heated T<sub>h</sub>. Here the sidewalls of the cavity assumed adiabatic. Also all the wall are occupied to be no-slip condition. A heated triangular obstacle is located at the center of the cavity. The study accomplished for Prandtl number Pr = 0.71;the Rayleigh number Ra = 10<sup>3</sup>, 10<sup>5</sup>, 5 × 10<sup>5</sup>, 10<sup>6</sup> and for Hartmann number Ha = 0, 20, 50, 100. The results represent the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.
文摘The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects;2) upper-bound solutions;3) accurate solutions and higher convergence rates;4) insensitivity to mesh distortion;5) Jacobian?free;6) volumetric-locking-free;and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on Al-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.
基金Supported by Chinese National Programs for High Technology Research and Development(2008AA042207)
文摘A numerical solution of the weight function for a two-electrode electromagnetic flowmeter was proposed. The solution was obtained by using the finite element method based on the basic equation of a traditional two-electrode electromagnetic flowmeter. The two-dimensional distribution of the weight function of the electromagnetic flowmeter obtained was verified by the analytical solution. Three-dimensional distribution of the weight function was also presented in the paper. It can be employed to analyze the sensitivity and linearity of the electromagnetic flowmeter with non-uniform magnetic field, and even to assist the design of the excitation coil pair.
文摘A number of phenomena and processes in geosciences can be summarized by second order partial differential equations. The major numerical methods for their solution include the classical finite difference method and the finite element method newly developed in the last two or three decades. Since 1977 the author has proved that for the Laplace and Poisson equations, these two methods are identical and are different only in the process of formulation. For transient problems, such as heat conduction in the earth and the groundwater and oil-gas unsteady flow in porous media, there are some differences in resulting linear algebraic euqations. In general, two methods give similar results, but when the time step is decreased to some extent, the resulting algebraic equation will be consistent with the anti-heat conduction equation rather than the original heat conduction equation. This is the reason why unrealistic potentials are produced by the finite element method. Such a problem can be overcome by using the lumped mass procedure, but it makes the two methods identical again.To improve the traditional finite difference method, it is quite desirable to introduce the common practice of the finite element method to define the parameters in elements rather than on nodes.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2006AA03Z401)'One-Hundred Talents Program' of the Chinese Academy of Sciences,and the National Natural Science Foundation of China (Grant No.60876033)
文摘We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k · p method. Numerical results including piezoelectricity, electron and hole levels, as well as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.
文摘Various mixed formulations of the finite element method (FEM) yield matrix equations involving zero diagonal entries. They are then dealt with by a penaltymethod so that they become non-zero but near zero terms. However, the penalty has tobe chosen properly. If it is too large, the matrix equation may become ill-conditioned. Onthe other hand, the matrix equation may give incorrect answer if the penalty is too small.In non-linear regime, the difficulty is more serious because the magnitude order of the matrix varies considerably in the entire loading history. The paper suggests an iteration solution and applies it to non-linear FEM of rubber-like hyper-elasticity. This type of analysisis highly non-linear both in physics and in geometry as well as the strong constraint of incompressibility. The iteration solution is demonstrated to possess super precision and excellent convergence characteristics.
文摘A bulging intervertebral disc (IVD) occurs when pressure on a spinal disc damages the once healthy disc,causing it to compress or change its normal shape.In medicine,most attention has been paid clinically to diagnosis of and treatment for such problems,which little effect has been made to understand such issues from a mechanics perspective,i.e.,the bulging deformation of the soft IVD induced by excessive compressive load.We report herein a simple elasticity solution to understand the bulging disc issue.For simplicity,the soft IVD is modeled as an incompressible circular composite layer consisting of an inner nucleus and outer annulus,sandwiched between two vertebral segments which are much stiffer than the IVD and can be treated as rigid bodies.Without adopting any assumptions regarding prescribed displacements or stresses,we obtained the stress and displacement fields within the composite layer when a certain compressive stain is applied via an asymptotic approach.This asymptotic approach is very simple and accurate enough for prediction of the bugling profile of the IVD.We also performed finite-element modeling (FEM) to validate our solutions;the predicted stress and displacement fields inside the composite are in good agreement with the FEM results.
基金supported by National Natural Science Foundation of China (Grant Nos.10901027 and 11171274)Foundation of Hunan Educational Committee (Grant No. 10C0370)
文摘With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.
文摘Adaptive finite element methods for optimization problems for second order linear el- liptic partial differential equations subject to pointwise constraints on the l2-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.Mathematics subject classification: 65N30, 90C46, 65N50, 49K20, 49N15, 65K10.
基金This research was supported by the National Natural Science Foundation of China (10571053)Scientific Research Fund of Hunan Provincial Education Department (0513039)the Special Funds of State Major Basic Research Projects (G1999032804)
文摘This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilinear elliptic equations. This strategy not only grently reduces the expensive computation, but also is successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems with non-odd nonlinearity on some convex or nonconvex domains. Numerical solutions illustrated by their graphics for visualization will show the efficiency of the approach.