Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central...This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central Andes (16°S-26°S) up to a depth of 400 km, the bottom of the asthenosphere. For this purpose a simulation running over c. 50,000 years will be realized based on the geometry of a generic subduction zone and an elasto-viscoplastic Drucker-Prager rheology. The kinematic and thermal boundary conditions as well as the rheological parameters represent the current state of the study area. In future works the model will be refined using a systematic study of physical parameters in order to estimate the influence of the main parameters (e.g. viscosity, fault friction, velocity, shear heating) on the results of the reference model presented here. The reference model is kept as simple as possible to be able to estimate the influence of the parameters in future studies in the best possible way, whilst minimizing comnutational time.展开更多
The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous mate...The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.展开更多
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role...The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.展开更多
In order to get to the desired target inside the body,it is essential to investigate the needle-tissue coupling process and calculate the tissue deformation.A cantilever beam model is presented to predicting the defle...In order to get to the desired target inside the body,it is essential to investigate the needle-tissue coupling process and calculate the tissue deformation.A cantilever beam model is presented to predicting the deflection and bending angle of flexible needle by analyzing the distribution of the force on needle shaft during the procedure of needle insertion into soft tissue.Furthermore,a finite element(FE)coupling model is proposed to simulate the needle-tissue interactive process.The plane and spatial models are created to relate the needle and tissue nodes.Combined with the cantilever beam model and the finite element needle-tissue coupling model,the simulation of needle-tissue interaction was carried out by the ABAQUS software.The comparing experiments are designed to understand the needle-tissue interactions,by which the same points in the experiments and simulation are compared and analyzed.The results show that the displacements in x and z directions in the simulation can accord with the experiments,and the deformation inside the tissue mainly occurs in the axial direction.The study is beneficial to the robot-assisted and virtual needle insertion procedure,and to help the physicians to predict the inside tissue deformation during the treatments.展开更多
The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution...The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology(large or small ballistic range).In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source.展开更多
Flexible pavements, whose surface layers are made from hot mix asphalt, may show rutting in some of these infrastructures during the first months of life. In the city of Ouagadougou, this rutting phenomenon is sometim...Flexible pavements, whose surface layers are made from hot mix asphalt, may show rutting in some of these infrastructures during the first months of life. In the city of Ouagadougou, this rutting phenomenon is sometimes observed. The objective of this article is to quantify the thermal response of the wearing course of national roads 1 and 2, when they are subjected to the braking of heavy trucks of 13 tons and 20 tons per axle. The meteorological conditions retained are those of the Burkinabe climate. The evaluation of the temperature was carried out by numerical simulation using the Comsol Multiphysics 5.2 software. This study showed that the thermal response of the pavement to the combined effects of surface temperature, overloading by a 20 tons heavy truck and braking during a heat wave increase in pavement surface temperature ranging from 1.09% for National Road 1 to 0.91% for National Road 2, particularly in the braking zone. This made it possible to establish the diagnosis according to which the nature of the bitumen used on the wearing course can reduce rigidity modulus. In predictive terms, they allowed us to deduce that an under-dimensioning of the wearing course, even if the bitumen was used is adequate.展开更多
Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both ...Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both of them should have wider applicability. Such a model coupling the discontinuous deforma- tion analysis method and the finite element method is proposed in this paper. In the model, so-called line blocks are introduced to deal with the interaction via the common interfacial boundary of the discontinuous deformation analysis domain with the finite element domain. The interfacial conditions during the incre- mental iteration process are satisfied by means of the line blocks. The requirement of gradual small dis- placements in each incremental step of this coupling method is met through a displacement control proce- dure. The model is simple in concept and is easy in numerical implementation. A numerical example is given. The displacement obtained by the coupling method agrees well with those obtained by the finite ele- ment method, which shows the rationality of this model and the validity of the implementation scheme.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
文摘This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central Andes (16°S-26°S) up to a depth of 400 km, the bottom of the asthenosphere. For this purpose a simulation running over c. 50,000 years will be realized based on the geometry of a generic subduction zone and an elasto-viscoplastic Drucker-Prager rheology. The kinematic and thermal boundary conditions as well as the rheological parameters represent the current state of the study area. In future works the model will be refined using a systematic study of physical parameters in order to estimate the influence of the main parameters (e.g. viscosity, fault friction, velocity, shear heating) on the results of the reference model presented here. The reference model is kept as simple as possible to be able to estimate the influence of the parameters in future studies in the best possible way, whilst minimizing comnutational time.
基金the National Natural Science Foundation of China (No.59995440).
文摘The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.
基金This study was co-supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500).
文摘The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.
基金This research work is sponsored by the National Natural Science Foundation of China(No.51665049).
文摘In order to get to the desired target inside the body,it is essential to investigate the needle-tissue coupling process and calculate the tissue deformation.A cantilever beam model is presented to predicting the deflection and bending angle of flexible needle by analyzing the distribution of the force on needle shaft during the procedure of needle insertion into soft tissue.Furthermore,a finite element(FE)coupling model is proposed to simulate the needle-tissue interactive process.The plane and spatial models are created to relate the needle and tissue nodes.Combined with the cantilever beam model and the finite element needle-tissue coupling model,the simulation of needle-tissue interaction was carried out by the ABAQUS software.The comparing experiments are designed to understand the needle-tissue interactions,by which the same points in the experiments and simulation are compared and analyzed.The results show that the displacements in x and z directions in the simulation can accord with the experiments,and the deformation inside the tissue mainly occurs in the axial direction.The study is beneficial to the robot-assisted and virtual needle insertion procedure,and to help the physicians to predict the inside tissue deformation during the treatments.
基金Project supported by the National Natural Science Foundation of China(Grant No.11502085)the Natural Science Foundation of Hubei Province,China(Grant No.2016CFB542)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2016YXMS097)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(NUAA),China(Grant No.0315K01)
文摘The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology(large or small ballistic range).In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source.
文摘Flexible pavements, whose surface layers are made from hot mix asphalt, may show rutting in some of these infrastructures during the first months of life. In the city of Ouagadougou, this rutting phenomenon is sometimes observed. The objective of this article is to quantify the thermal response of the wearing course of national roads 1 and 2, when they are subjected to the braking of heavy trucks of 13 tons and 20 tons per axle. The meteorological conditions retained are those of the Burkinabe climate. The evaluation of the temperature was carried out by numerical simulation using the Comsol Multiphysics 5.2 software. This study showed that the thermal response of the pavement to the combined effects of surface temperature, overloading by a 20 tons heavy truck and braking during a heat wave increase in pavement surface temperature ranging from 1.09% for National Road 1 to 0.91% for National Road 2, particularly in the braking zone. This made it possible to establish the diagnosis according to which the nature of the bitumen used on the wearing course can reduce rigidity modulus. In predictive terms, they allowed us to deduce that an under-dimensioning of the wearing course, even if the bitumen was used is adequate.
文摘Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both of them should have wider applicability. Such a model coupling the discontinuous deforma- tion analysis method and the finite element method is proposed in this paper. In the model, so-called line blocks are introduced to deal with the interaction via the common interfacial boundary of the discontinuous deformation analysis domain with the finite element domain. The interfacial conditions during the incre- mental iteration process are satisfied by means of the line blocks. The requirement of gradual small dis- placements in each incremental step of this coupling method is met through a displacement control proce- dure. The model is simple in concept and is easy in numerical implementation. A numerical example is given. The displacement obtained by the coupling method agrees well with those obtained by the finite ele- ment method, which shows the rationality of this model and the validity of the implementation scheme.