期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of process parameters on deep drawing of AA6111 aluminum alloy at elevated temperatures 被引量:8
1
作者 马闻宇 王宝雨 +2 位作者 傅垒 周靖 黄鸣东 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1167-1174,共8页
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa... To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM. 展开更多
关键词 aluminum process parameters finite element method hot drawing analysis of variance analysis of mean
下载PDF
Multiaxial fatigue life prediction of composite materials 被引量:5
2
作者 Jingmeng WENG Weidong WEN Hongjian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1012-1020,共9页
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Ass... In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms. 展开更多
关键词 Fatigue damage parameter finite element analysis Life prediction Multiaxial fatigue Periodical boundary condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部