期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
Optimizing design of lattice materials based on finite element simulation
1
作者 Sun Bingbing Chen Bingqing +2 位作者 Liu Wei Qin Renyao Zhang Xuejun 《China Welding》 CAS 2024年第3期52-64,共13页
The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requ... The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials. 展开更多
关键词 selective laser melting lattice materials finite element simulation materials design mechanical property
下载PDF
Finite element analysis and simulation for cold precision forging of a helical gear 被引量:13
2
作者 冯玮 华林 韩星会 《Journal of Central South University》 SCIE EI CAS 2012年第12期3369-3377,共9页
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille... To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm. 展开更多
关键词 helical gear cold precision forging finite element simulation relief-hole principle
下载PDF
Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-wall parts considering riveting assembly with finite element method 被引量:6
3
作者 PAN Ming-hui TANG Wen-cheng +1 位作者 XING Yan NI Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期60-77,共18页
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr... In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future. 展开更多
关键词 thin-wall parts assembly assembly deformation deviation theoretical deformation model finite element simulation measuring experiment
下载PDF
Plastic characterization of metals by combining nanoindentation test and finite element simulation 被引量:5
4
《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2368-2373,共6页
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo... Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy. 展开更多
关键词 NANOINDENTATION finite element simulation representative stress representative stain initial yield stress
下载PDF
Finite Element Numerical Simulation of Ground Subsidence in Liangjia Colliery
5
作者 张力 刘锡良 王来 《Transactions of Tianjin University》 EI CAS 2002年第3期200-202,共3页
Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the... Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery. 展开更多
关键词 ground subsidence finite element numerical simulation back-analysis of parameters
下载PDF
Prediction of hot tearing susceptibility of direct chill casting of AA6111 alloys via finite element simulations 被引量:4
6
作者 Dong-xu CHEN Rui-feng DOU +1 位作者 Jia-qiang HAN Jun-sheng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第12期3161-3172,共12页
To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearin... To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality. 展开更多
关键词 vehicle light-weighting AA6111 alloy direct chill casting hot tearing criterion pore fraction finite element simulation
下载PDF
Finite element simulation of inertia friction welding of superalloy bars 被引量:4
7
作者 王非凡 李文亚 +1 位作者 代野 李京龙 《China Welding》 EI CAS 2012年第1期13-17,共5页
A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigat... A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found. 展开更多
关键词 inertia friclion welding finite element simulation heat generation thermal reflux
下载PDF
Finite element simulation of food transport through the esophageal body 被引量:3
8
作者 Wei Yang Tat Ching Fung +1 位作者 Kerm Sire Chian Chuh Khiun Chong 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第9期1352-1359,共8页
The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structure-mechanics relationship of the tissue. In this study... The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structure-mechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore, the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications. 展开更多
关键词 Food transport finite element simulation ESOPHAGUS
下载PDF
RESEARCH ON THE SELECTION OF FRICTION MODELS IN THE FINITE ELEMENT SIMULATION OF WARM EXTRUSION 被引量:3
9
作者 X.B.Lin H.S.Xiao Z.L.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第2期90-96,共7页
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi... During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last. 展开更多
关键词 friction model warm extrusion finite element simulation
下载PDF
Finite element simulation of aluminum alloy cross valve forming by multi-way loading 被引量:2
10
作者 张大伟 杨合 孙志超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1059-1066,共8页
Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross val... Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross valve under multi-way loading due to the complexity of loading path and the multiplicity of associated processing parameters.A model of the process was developed under DFEORM-3D environment based on the coupled thermo-mechanical finite element method.The comparison between two process models,the conventional isothermal process model and the non-isothermal process model developed in this study,was carried out,and the results indicate that the thermal events play an important role in the aluminum alloy forming process under multi-way loading.The distributions and evolutions of the temperature field and strain filed are obtained by non-isothermal process simulation.The plastic zone and its extension in forming process of cross valve were analyzed.The results may provide guidelines for the determination of multi-way loading forming scheme and loading conditions of the forming cross valve components. 展开更多
关键词 bulk forming multi-way loading cross valve aluminum alloy finite element simulation
下载PDF
Finite element simulation on the deep drawing of titanium thin-walled surface part 被引量:2
11
作者 GAO Enzhi, LI Hongwei, KOU Hongchao, CHANG Hui, LI Jinshan, and ZHOU Lian State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期108-113,共6页
The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design w... The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force. 展开更多
关键词 deep drawing titanium alloy finite element simulation orthogonal experiment processing parameters
下载PDF
Finite element simulation and microstructure of two-pass inner spinning process of curved-generatrix cone cylindrical parts with annealing/quenching 被引量:2
12
作者 HAO Zeng-liang YANG Zhe-yi) +3 位作者 WEI Wei LIU Lei LUO Jun-ting LIU Jin-heng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3305-3314,共10页
A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spin... A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process. 展开更多
关键词 curved generatrix conical internal spinning process annealing/quenching small-end rotations finite element simulation
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
13
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution Constitutive model finite element simulation
下载PDF
THREE-DIMENSIONAL FINITE ELEMENT SIMULATION OF TOTAL KNEE JOINT IN GAIT CYCLE 被引量:2
14
作者 Yuan Guo Xushu Zhang Weiyi Chen 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期347-351,共5页
Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main car... Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle. 展开更多
关键词 knee joint finite element simulation contact pressure BIOMECHANICS
下载PDF
Machining Deformation Prediction of Thin-Walled Part Based on Finite Element Analysis 被引量:2
15
作者 Hongxiang Wang Yabin Tang +1 位作者 Zhanshan Liu Shi Gao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期47-54,共8页
For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation proce... For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation process,the change process of residual stress within aluminum alloy pre-stretching plate is researched,and the distribution law of residual stress is indirectly obtained by delamination measurement methods,so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress,dynamic milling force and clamping force on machining distortion,a threedimensional dynamic finite element simulation model is established,and the whole cutting process is simulated from the blank material to finished product,a novel prediction method is proposed,which can availably predict the machining distortion accurately. The machining distortion state of the thin-walled part is achieved at different processing steps,the machining distortion of the thin-walled part is detected with three coordinate measuring machine tools,show that the simulation results are in good agreement with experimental data. 展开更多
关键词 thin-walled part machining deformation residual stress aluminum alloy finite element simulation
下载PDF
FINITE ELEMENT MODEL AND SIMULATION OF ROTARY FORGING OF A DISC 被引量:1
16
作者 G.Liu, S. J. Yuan, Z. R. Wang and T. Xie 1) Harbin Institute of Technology, Harbin 150001, China 2) Harbin Huasheng Coorpration, Harbin 150001, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期470-475,共6页
The rotary forging process of a disc is simulated by 3-D finite element method.The motion of the rotary the is described as the combination of a revolution round the machine axis and a spin round the rotary die axis... The rotary forging process of a disc is simulated by 3-D finite element method.The motion of the rotary the is described as the combination of a revolution round the machine axis and a spin round the rotary die axis. Therefore, the workpiece can be loaded and unloaded partly and cyclically by the cone surface of the rotary the continuously, according with the practical rotary forging process. From the siumulation rasults, the causes of center-thinning during rotary forging of discs are that the locally loading of rotary die made the workpiece center get high radial and tangential tensile stresses, and then the shortening in axial direction and the elongating in tangential and radial direction occur continuous- ly. 展开更多
关键词 finite element simulation rotary forging disc center-thinning
下载PDF
Finite element simulation for mechanical response of surface mounted solder joints under different temperature cycling 被引量:1
17
作者 马鑫 钱乙余 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期471-474,共4页
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of... Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test. 展开更多
关键词 finite element simulation surface mounted solder joint thermal cycling mechanical response
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:4
18
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
下载PDF
Finite Element Analysis for In-Plane Crushing Behaviour of Aluminium Honeycombs 被引量:1
19
作者 ZHU Feng ZHAO Longmao LU Guoxing 《Transactions of Tianjin University》 EI CAS 2006年第B09期142-146,共5页
A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All t... A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All the analyses are quasi-static, and can be divided into three groups, which are designed to investigate the effects of cell size, foil thickness and yield stress of the foil material, respectively, on the structural response of honeycombs. The result indicates that these factors can significantly affect the plateau stresses of honeycomb cellular structures in both directions, and the plateau stresses in X2 direction are slightly smaller than those in X1 direction. The simulation results were further compared with published theoretical predictions and show higher values. The difference was then analyzed and a new expression for the plateau stress of honeycombs was suggested. 展开更多
关键词 finite element analysis/simulation aluminium honeycomb crushing/compression behaviour LS- DYNA
下载PDF
Simulation of bulk metal forming processes using one-step finite element approach based on deformation theory of plasticity 被引量:2
20
作者 王鹏 董湘怀 傅立军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期276-282,共7页
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra... The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method. 展开更多
关键词 bulk metal forming plastic deformation theory finite element method one-step forward simulation rigid-plastic materials
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部