The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time ...This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.展开更多
A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived f...A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived for both the displacement and the stress.展开更多
Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space(Pk(K),P_(k−1)(∂K),[P_(k−1)(K)]^(2)).Optimal order a priori error estimates for both spac...Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space(Pk(K),P_(k−1)(∂K),[P_(k−1)(K)]^(2)).Optimal order a priori error estimates for both space-discrete scheme and implicit fully discrete scheme are derived in L1(L2)norm.This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes.Finite element algorithm presented here can contribute to a variety of hyperbolic problems where physical domain consists of heterogeneous media.展开更多
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introdu...This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2 (H1) and L2 (L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition kn ≥ ch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.展开更多
Optimization problems with L^(1)-control cost functional subject to an elliptic partial differential equation(PDE)are considered.However,different from the finite dimensiona l^(1)-regularization optimization,the resul...Optimization problems with L^(1)-control cost functional subject to an elliptic partial differential equation(PDE)are considered.However,different from the finite dimensiona l^(1)-regularization optimization,the resulting discretized L^(1)norm does not have a decoupled form when the standard piecewise linear finite element is employed to discretize the continuous problem.A common approach to overcome this difficulty is employing a nodal quadrature formula to approximately discretize the L^(1)-norm.In this paper,a new discretized scheme for the L^(1)-norm is presented.Compared to the new discretized scheme for L^(1)-norm with the nodal quadrature formula,the advantages of our new discretized scheme can be demonstrated in terms of the order of approximation.Moreover,finite element error estimates results for the primal problem with the new discretized scheme for the L^(1)-norm are provided,which confirms that this approximation scheme will not change the order of error estimates.To solve the new discretized problem,a symmetric Gauss-Seidel based majorized accelerated block coordinate descent(sGS-mABCD)method is introduced to solve it via its dual.The proposed sGS-mABCD algorithm is illustrated at two numerical examples.Numerical results not only confirm the finite element error estimates,but also show that our proposed algorithm is efficient.展开更多
Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence erro...Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence error estimates; Error estimates of convergence and superconvergence for the time-continuous finite element method; Details of the global superconvergence for the semi-discrete scheme.展开更多
This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spac...This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.展开更多
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provinical Innovation Foundation for Postgraduate(lx2009 B120)。
文摘This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.
文摘A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived for both the displacement and the stress.
文摘Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space(Pk(K),P_(k−1)(∂K),[P_(k−1)(K)]^(2)).Optimal order a priori error estimates for both space-discrete scheme and implicit fully discrete scheme are derived in L1(L2)norm.This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes.Finite element algorithm presented here can contribute to a variety of hyperbolic problems where physical domain consists of heterogeneous media.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 11061021), Natural Science Fund of Inner Mongolia Autonomous Region (2012MS0106, 2012MS0108), Scientific Research Projection of Higher Schools of Inner Mongolia (NJZZ12011, N J10006, NJZY13199), and the Program of Higherlevel talents of Inner Mongolia University (125119, 30105-125132).
文摘This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2 (H1) and L2 (L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition kn ≥ ch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.
文摘Optimization problems with L^(1)-control cost functional subject to an elliptic partial differential equation(PDE)are considered.However,different from the finite dimensiona l^(1)-regularization optimization,the resulting discretized L^(1)norm does not have a decoupled form when the standard piecewise linear finite element is employed to discretize the continuous problem.A common approach to overcome this difficulty is employing a nodal quadrature formula to approximately discretize the L^(1)-norm.In this paper,a new discretized scheme for the L^(1)-norm is presented.Compared to the new discretized scheme for L^(1)-norm with the nodal quadrature formula,the advantages of our new discretized scheme can be demonstrated in terms of the order of approximation.Moreover,finite element error estimates results for the primal problem with the new discretized scheme for the L^(1)-norm are provided,which confirms that this approximation scheme will not change the order of error estimates.To solve the new discretized problem,a symmetric Gauss-Seidel based majorized accelerated block coordinate descent(sGS-mABCD)method is introduced to solve it via its dual.The proposed sGS-mABCD algorithm is illustrated at two numerical examples.Numerical results not only confirm the finite element error estimates,but also show that our proposed algorithm is efficient.
基金This work is supported in part by NSERC (Canada)Chinese National key Basic Research Special Fund (No. G1998020322)SRF for ROCS, SEM.
文摘Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence error estimates; Error estimates of convergence and superconvergence for the time-continuous finite element method; Details of the global superconvergence for the semi-discrete scheme.
基金supported by the National Natural Science Foundation of Chinaunder Grant No.11271145Foundation for Talent Introduction of Guangdong Provincial University+3 种基金Fund for the Doctoral Program of Higher Education under Grant No.20114407110009the Project of Department of Education of Guangdong Province under Grant No.2012KJCX0036supported by Hunan Education Department Key Project 10A117the National Natural Science Foundation of China under Grant Nos.11126304 and 11201397
文摘This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.